Skip to main content

Immunotherapy for Virus-Associated Malignancies

  • Chapter
Book cover Immunotherapy for Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 141 Accesses

Abstract

Estimates of the fraction of human malignancies that are associated with viral infections range from 10% to 20% (1). Among viruses and their associated cancers are Epstein-Barr virus (EBV), which is associated with many different malignant diseases including lymphoproliferative disease (LPD) in immunosuppressed patients, Hodgkin’s disease, Burkitt’s lymphoma and nasopharyngeal carcinoma; human papillomaviruses (HPV) types 16 and 18 with cervical cancer; hepatitis B (HBV) and hepatitis C viruses with hepatocellular carcinoma; human T-cell leukemia virus-1 with adult T-cell lymphoma; and human herpes virus-8 with Kaposi’s sarcoma in patients with AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang FCS, Kieff ED. Medical virology. In: Fauci AS, Braunwald E, Isselbacher KJ, et al. (eds.) Harrison’s Online. New York: McGraw-Hill, 2000.

    Google Scholar 

  2. Rickinson AB. Immune intervention against virus-associated human cancers. Ann Oncol 1995; 6 (suppl 1): 69–71.

    PubMed  Google Scholar 

  3. McMichael A. T cell responses and viral escape. Cell 1998; 93: 673–676.

    Article  PubMed  CAS  Google Scholar 

  4. Jondal M, Schirmbeck R, Reimann J. MHC class I-restricted CTL responses to exogenous antigens. Immunity 1996; 5: 295–302.

    Article  PubMed  CAS  Google Scholar 

  5. Pamer E, Cresswell P. Mechanisms of MHC class I—restricted antigen processing. Annu Rev Immunol 1998; 16: 323–358.

    Article  PubMed  CAS  Google Scholar 

  6. Sigal LJ, Crotty S, Andino R, Rock KL. Cytotoxic T-cell immunity to virus-infected nonhaematopoietic cells requires presentation of exogenous antigen [see comments]. Nature 1999; 398: 77–80.

    Article  PubMed  CAS  Google Scholar 

  7. Lanzavecchia A. Mechanisms of antigen uptake for presentation. Curr Opin Immunol 1996; 8: 348–354.

    Article  PubMed  CAS  Google Scholar 

  8. Borysiewicz LK, Sissons JPG. Cytotoxic T cells and human herpes virus infections. In: Oldstone MBA (ed). Cytotoxic T-Lymphocytes in Human Viral and Malaria Infections. Berlin: Springer-Verlag, 1994, pp. 123–150.

    Chapter  Google Scholar 

  9. Gilbert MJ, Riddell SR, Plachter B, Greenberg PD. Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 1996; 383: 720–722.

    Article  PubMed  CAS  Google Scholar 

  10. Smith CA, Woodruff LS, Kitchingman GR, Rooney CM. Adenovirus-pulsed dendritic cells stimulate human virus-specific T-cell responses in vitro. J Virol 1996; 70: 6733–6740.

    PubMed  CAS  Google Scholar 

  11. Melief CJ, Kast WM. Efficacy of cytotoxic T lymphocytes against virus-induced tumors. Cancer Cells 1990; 2: 116–120.

    PubMed  CAS  Google Scholar 

  12. Velders MP, Schreiber H, Kast WM. Active immunization against cancer cells: impediments and advances. Semin Oncol 1998; 25: 697–706.

    PubMed  CAS  Google Scholar 

  13. Zinkernagel RM, Doherty PC. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 1974; 251: 547–548.

    Article  PubMed  CAS  Google Scholar 

  14. Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996; 2: 551–555.

    Article  PubMed  CAS  Google Scholar 

  15. Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia [see comments]. Science 1997; 276: 1719–1724.

    Article  PubMed  CAS  Google Scholar 

  16. Hwu P, Yannelli J, Kriegler M, et al. Functional and molecular characterization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-alpha cDNA for the gene therapy of cancer in humans. J Immunol 1993; 150: 4104–4115.

    PubMed  CAS  Google Scholar 

  17. Velders MP, Nieland JD, Rudolf MP, et al. Identification of peptides for immunotherapy of cancer. It is worth the effort. Crit Rev Immunol 1998; 18: 7–27.

    Article  PubMed  CAS  Google Scholar 

  18. Ressing ME, Offringa R, Toes RE, et al. Immunotherapy of cancer by peptide-based vaccines for the induction of tumor-specific T cell immunity. Immunotechnology 1996; 2: 241–251.

    Article  PubMed  CAS  Google Scholar 

  19. Ressing ME, van Driel WJ, Celis E, et al. Occasional memory cytotoxic T-cell responses of patients with human papillomavirus type 16-positive cervical lesions against a human leukocyte antigen-A *0201-restricted E7-encoded epitope. Cancer Res 1996; 56: 582–588.

    PubMed  CAS  Google Scholar 

  20. Sette A, Vitiello A, Reherman B, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 1994; 153: 5586–5592.

    PubMed  CAS  Google Scholar 

  21. Schulz M, Zinkernagel RM, Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci USA 1991; 88: 991–993.

    Article  PubMed  CAS  Google Scholar 

  22. Kast WM, Roux L, Curren J, et al. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci USA 1991; 88: 2283–2287.

    Article  PubMed  CAS  Google Scholar 

  23. Feltkamp MC, Smits HL, Vierboom MP, et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–2249.

    Article  PubMed  CAS  Google Scholar 

  24. Toes RE, Blom RJ, Offringa R, Kast WM, Melief CJ. Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J Immunol 1996; 156: 3911–3918.

    PubMed  CAS  Google Scholar 

  25. Grohmann U, Bianchi R, Ayroldi E, et al. A tumor-associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL-12 can prevent or revert the anergic state. J Immunol 1997; 158: 3593–3602.

    PubMed  CAS  Google Scholar 

  26. White SA, Conry RM, Strong TV, Curiel DT, LoBuglio AL. Polynucleotide-mediated immunization therapy of cancer. In: Lattime EC, Gerson SL (eds). Gene Therapy of Cancer. San Diego: Academic Press, 1999, pp. 271–283.

    Google Scholar 

  27. Ulmer JB, Fu TM, Deck RR, et al. Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. J Virol 1998; 72: 5648–5653.

    PubMed  CAS  Google Scholar 

  28. Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992; 356: 152–154.

    Article  PubMed  CAS  Google Scholar 

  29. Butterfield LH, Ribas A, Economou JS. DNA and dendritic cell-based genetic immunization against cancer. In: Lattime EC, Gerson SL (eds). Gene Therapy of Cancer. San Diego: Academic Press, 1999, pp. 285–298.

    Google Scholar 

  30. Inaba K, Turley S, Yamaide F, et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 1998; 188: 2163–2173.

    Article  PubMed  CAS  Google Scholar 

  31. Davis HL, McCluskie MJ, Gerin JL, Purcell RH. DNA vaccine for hepatitis B: evidence for immunogenicity in chimpanzees and comparison with other vaccines. Proc Natl Acad Sci USA 1996; 93: 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  32. Barry MA, Johnston SA. Biological features of genetic immunization. Vaccine 1997; 15: 788–791.

    Article  PubMed  CAS  Google Scholar 

  33. Constant SL, Bottomly K. Induction of Thl and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol, 1997; 15: 297–322.

    Article  PubMed  CAS  Google Scholar 

  34. Chow YH, Chiang BL, Lee YL, et al. Development of Thl and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by code-livery of various cytokine genes. J Immunol 1998; 160: 1320–1329.

    PubMed  CAS  Google Scholar 

  35. Fallarino F, Uyttenhove C, Boon T, Gajewski TE Improved efficacy of dendritic cell vaccines and successful immunization with tumor antigen peptide-pulsed peripheral blood mononuclear cells by coadministration of recombinant murine interleukin-12. Int J Cancer 1999; 80: 324–333.

    Article  PubMed  CAS  Google Scholar 

  36. Geissler M, Gesien A, Tokushige K, Wands JR. Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. J Immunol 1997; 158: 1231–1237.

    PubMed  CAS  Google Scholar 

  37. Kim JJ, Nottingham LK, Tsai A, et al. Antigen-specific humoral and cellular immune responses can be modulated in rhesus macaques through the use of IFN-gamma, IL-12, or IL-18 gene adjuvants. J Med Primatol 1999; 28: 214–223.

    Article  PubMed  CAS  Google Scholar 

  38. Halpern MD, Kurlander RJ, Pisetsky DS. Bacterial DNA induces murine interferon-gamma production by stimulation of interleukin-12 and tumor necrosis factor-alpha. Cell Immunol 1996; 167: 72–78.

    Article  PubMed  CAS  Google Scholar 

  39. Sato Y, Roman M, Tighe H, et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996; 273: 352–354.

    Article  PubMed  CAS  Google Scholar 

  40. Ciernik IF, Berzofsky JA, Carbone DP. Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 1996; 156: 2369–2375.

    PubMed  CAS  Google Scholar 

  41. Lin KY, Guarnieri FG, Staveley-O’Carroll KF, et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56: 21–26.

    PubMed  CAS  Google Scholar 

  42. Wu TC, Guarnieri FG, Staveley-O’Carroll KF, et al. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc Natl Acad Sci USA 1995; 92: 11671–11675.

    Article  PubMed  CAS  Google Scholar 

  43. Conry RM, LoBuglio AF, Curiel DT. Polynucleotide-mediated immunization therapy of cancer. Semin Oncol 1996; 23: 135–147.

    PubMed  CAS  Google Scholar 

  44. Nichols WW, Ledwith BJ, Manam SV, Troilo PJ. Potential DNA vaccine integration into host cell genome. Ann NY Acad Sci 1995; 772: 30–39.

    Article  PubMed  CAS  Google Scholar 

  45. Suhrbier A. Multi-epitope DNA vaccines. Immunol Cell Biol 1997; 75: 402–408.

    Article  PubMed  CAS  Google Scholar 

  46. Thomson SA, Sherritt MA, Medveczky J, et al. Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 1998; 160: 1717–1723.

    PubMed  CAS  Google Scholar 

  47. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  PubMed  CAS  Google Scholar 

  48. Timmerman JM, Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 1999; 50: 507–529.

    Article  PubMed  CAS  Google Scholar 

  49. De Bruijn ML, Schuurhuis DH, Vierboom MP, et al. Immunization with human papillomavirus type 16 (HPV16) oncoprotein-loaded dendritic cells as well as protein in adjuvant induces MHC class I-restricted protection to HPV 16-induced tumor cells. Cancer Res 1998; 58: 724–731.

    PubMed  Google Scholar 

  50. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  PubMed  CAS  Google Scholar 

  51. Ossevoort MA, Feltkamp MC, van Veen KJ, Melief CJ, Kast WM. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J Immunother Emphasis Tumor Immunol 1995; 18: 86–94.

    Article  PubMed  CAS  Google Scholar 

  52. Arthur JF, Butterfield LH, Roth MD, et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 1997; 4: 17–25.

    PubMed  CAS  Google Scholar 

  53. Morse MA, Lyerly HK, Gilboa E, Thomas E, Nair SK. Optimization of the sequence of antigen loading and CD40-ligand-induced maturation of dendritic cells. Cancer Res 1998; 58: 2965–2968.

    PubMed  CAS  Google Scholar 

  54. Zhong L, Granelli-Piperno A, Choi Y, Steinman RM. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol 1999; 29: 964–972.

    Article  PubMed  CAS  Google Scholar 

  55. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184: 465–472.

    Article  PubMed  CAS  Google Scholar 

  56. McClain KL, Leach CT, Jenson HB, et al. Association of Epstein-Barr virus with leiomyosarcomas in children with AIDS [see comments]. N Engl J Med 1995; 332: 12–18.

    Article  PubMed  CAS  Google Scholar 

  57. Su IJ, Lin KH, Chen CJ, et al. Epstein-Barr virus-associated peripheral T-cell lymphoma of activated CD8 phenotype. Cancer 1990; 66: 2557–2562.

    Article  PubMed  CAS  Google Scholar 

  58. Lucas KG, Burton RL, Zimmerman SE, et al. Semiquantitative Epstein-Barr virus (EBV) polymerase chain reaction for the determination of patients at risk for EBV-induced lymphoproliferative disease after stem cell transplantation. Blood 1998; 91: 3654–3661.

    PubMed  CAS  Google Scholar 

  59. Rooney CM, Smith CA, Ng CYC, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92: 1549–1555.

    PubMed  CAS  Google Scholar 

  60. Heslop HE, Brenner MK, Rooney CM. Donor T cells to treat EBV-associated lymphoma [letter; comment]. N Engl J Med 1994; 331: 679–680.

    Article  PubMed  CAS  Google Scholar 

  61. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92: 1549–1555.

    PubMed  CAS  Google Scholar 

  62. Gottschalk S, Ng CYC, Perez M, Brenner MK, Heslop HE, Rooney CM. Mutation in EBV produces immunoblastic lymphoma unresponsive to CTL immunotherapy. Blood 1998; 92: 321a (Abstract).

    Google Scholar 

  63. Khanna R, Bell S, Sherritt M, et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 1999; 96: 10391–10396.

    Article  PubMed  CAS  Google Scholar 

  64. Roskrow MA, Rooney CM, Heslop HE, et al. Administration of neomycin resistance gene marked EBV specific cytotoxic T-lymphocytes to patients with relapsed EBV-positive Hodgkin disease. Hum Gene Ther 1998; 9: 1237–1250.

    Article  PubMed  CAS  Google Scholar 

  65. Moss DJ, Burrows SR, Suhrbier A, Khanna R. Potential antigenic targets on Epstein-Barr virus-associated tumours and the host response. In: Chadwick DJ, Marsh J (eds). Vaccines Against Virally Induced Cancers. New York: John Wiley & Sons, 1994, pp. 4–20.

    Google Scholar 

  66. Krause PR, Straus SE. Herpesvirus vaccines. Development, controversies, and applications. Infect Dis Clin North Am 1999; 13:61–81, vi.

    Google Scholar 

  67. Gu SY, Huang TM, Ruan L, et al. First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev Biol Stand 1995; 84: 171–177.

    PubMed  CAS  Google Scholar 

  68. Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 1997; 15: 405–431.

    Article  PubMed  CAS  Google Scholar 

  69. Bosch FX, Manos MM, Munoz N, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group [see comments]. J Natl Cancer Inst 1995; 87: 796–802.

    Article  PubMed  CAS  Google Scholar 

  70. Tindle RW. Immunomanipulative strategies for the control of human papillomavirus associated cervical disease. Inununol Res 1997; 16: 387–400.

    Article  CAS  Google Scholar 

  71. Galloway DA. Is vaccination against human papillomavirus a possibility? Lancet, 1998; 351 (suppl 3): 22–24.

    Article  PubMed  Google Scholar 

  72. Nimako M, Fiander AN, Wilkinson GW, Borysiewicz LK, Man S. Human papillomavirus-specific cytotoxic T lymphocytes in patients with cervical intraepithelial neoplasia grade III. Cancer Res 1997; 57: 4855–4861.

    PubMed  CAS  Google Scholar 

  73. van Driel WJ, Ressing ME, Brandt RM, et al. The current status of therapeutic HPV vaccine. Ann Med 1996; 28: 471–477.

    Article  PubMed  Google Scholar 

  74. Chen L, Mizuno MT, Singhal MC, et al. Induction of cytotoxic T lymphocytes specific for a syngeneic tumor expressing the E6 oncoprotein of human papillomavirus type 16. J Immunol 1992; 148: 2617–2621.

    PubMed  CAS  Google Scholar 

  75. van Driel WJ, Ressing ME, Kenter GG, et al. Vaccination with HPV 16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer 1999; 35: 946–952.

    Article  PubMed  Google Scholar 

  76. Steller MA, Gurski KJ, Murakami M, et al. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res 1998; 4: 2103–2109.

    PubMed  CAS  Google Scholar 

  77. Borysiewicz LK, Fiander A, Nimako M, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer [see comments]. Lancet 1996; 347: 1523–1527.

    Article  PubMed  CAS  Google Scholar 

  78. Dupuy C, Buzoni-Gatel D, Touze A, Le Cann P, Bout D, Coursaget P. Cell mediated immunity induced in mice by HPV 16 L1 virus-like particles. Microbiol Pathogen 1997; 22: 219–225.

    Article  CAS  Google Scholar 

  79. Peng S, Frazer IH, Fernando GJ, Zhou J. Papillomavirus virus-like particles can deliver defined CTL epitopes to the MHC class I pathway. Virology 1998; 240: 147–157.

    Article  PubMed  CAS  Google Scholar 

  80. Mahoney FJ. Update on diagnosis, management, and prevention of hepatitis B virus infection. Clin Microbiol Rev 1999; 12: 351–366.

    PubMed  CAS  Google Scholar 

  81. Waters JA, Foster GR, Thursz MR, Thomas HC. Hepatitis B virus infection and immunity. In: McCance DJ (ed). Human Tumor Viruses. Washington, DC: ASM, 1998, pp. 283–299.

    Google Scholar 

  82. Bertoni R, Sidney J, Fowler P, Chesnut RW, Chisari FV, Sette A. Human histocompatibility leukocyte antigen-binding supermotifs predict broadly cross-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. J Clin Invest 1997; 100: 503–513.

    Article  PubMed  CAS  Google Scholar 

  83. Vitiello A, Ishioka G, Grey HM, et al. Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans. J Clin Invest 1995; 95: 341–349.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sili, U., Heslop, H., Rooney, C.M. (2002). Immunotherapy for Virus-Associated Malignancies. In: Jacobson, J.M. (eds) Immunotherapy for Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-171-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-171-8_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9681-9

  • Online ISBN: 978-1-59259-171-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics