Skip to main content

Immunoassay Detection of Benzodiazepines

  • Chapter
  • 148 Accesses

Part of the book series: Forensic Science and Medicine ((FSM))

Abstract

Benzodiazepines were first introduced in the 1960s as a safer alternative to phenobarbital. In the 1970s and mid-1980s, diazepam (Valium) was the most commonly prescribed benzodiazepine. The dose levels and excretion patterns of these first generation benzodiazepines produced concentrations in samples that made drug detection easy by immunoassay (1). As chemists explored structure—activity relationships of this new class of compounds, a new generation of benzodiazepines was developed that exploited substituent activation of 1,4-benzodiazepine (2). These new benzodiazepines therefore were more potent prescribed in lower doses. This new generation of benzodiazepines was also fast acting and had much shorter half-lives with respect to blood concentrations and excretion levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaplan, S. A, Jack, M. L., Alexander, K., and Weinfeld, R. E. (1973) Pharmacokinetic profile of diazepam in man following single intravenous and oral and chronic oral administrations. J. Pharmaceut. Sci. 62, 1789–1796.

    Article  CAS  Google Scholar 

  2. Sternbach, L. H. (1973) Chemistry of the 1,4-benzodiazepines and some aspects of the structure-activity relationship, in The Benzodiazepines (Garattini, S., Mussini, E., and Randall, L. O., eds.), Raven Press, New York.

    Google Scholar 

  3. Dawson, G. W., Jue, S. G., and Brogden, R. N. (1984) Alprazolam: a review of its pharmacodynamic properties and efficacy in the treatment of anxiety and depression. Drugs 27, 132–147.

    Article  PubMed  CAS  Google Scholar 

  4. Baktir, G., Fisch, H. U., Huguenin, P., and Bircher, J. (1983) Triazolam concentration-effect relationships in healthy subjects. Clin. Pharmacol. Ther. 34, 195–201.

    Article  PubMed  CAS  Google Scholar 

  5. Greenblatt, D. J., Schillings, R. T., and Hyriakopoulos, A. A. (1976) Clinical pharmacokinetics of lorazepam. I. Absorption and disposition of oral 14C-lorazepam. Clin. Pharmacol. Ther. 20, 329–341.

    PubMed  CAS  Google Scholar 

  6. Rieder, J. and Wendt, G. (1973) Pharmacokinetics and metabolism of the hypnotic nitrazepam, in The Benzodiazepines (Garattini, S., Mussini, E., and Randall, L.O., eds.), Raven Press, New York.

    Google Scholar 

  7. Salamone, S. J., Honasoge, S., Brenner, C., McNally, A. J., Passarelli, J., Goc-Szkutnicka, K., et al. (1997) Flunitrazepam excretion patterns using the Abuscreen Ontrak and Online immunoassays: comparison with GC-MS. J. Analyt. Toxicol. 21, 341–345.

    Article  CAS  Google Scholar 

  8. Berlin, A. and Dahlstrom, H. (1975) Pharmacokinetics of the anticonvulsant drug clonazepam evaluated from single oral and intravenous doses and by repeated oral administration. Eur. J. Clin. Pharmacol. 9, 155–159.

    Article  PubMed  CAS  Google Scholar 

  9. Kaplan, S. A. and Jack, M. L. (1983) Metabolism of the benzodiazepines: pharmaco-kinetic and pharmacodynamic considerations, in The Benzodiazepines: From Molecular Biology to Clinical Practice (Costa, E., ed.), Raven Press, New York.

    Google Scholar 

  10. Beck, O., Lafolie, P., Odelius, G., and Boréus, L. (1990) Immunological screening of benzodiazepines in urine: improved detection of oxazepam intake. Toxicol. Lett. 52, 7–14.

    Article  PubMed  CAS  Google Scholar 

  11. Beck, O., Lafolie, P., Hjemdahl, P., Borg, S., Odelius, G., and Wirbing, P. (1992) Detection of benzodiazepine intake in therapeutic doses by immunanalysis of urine: two techniques evaluated and modified for improved performance. Clin. Chem. 38, 271–275.

    PubMed  CAS  Google Scholar 

  12. Meatherall, R. (1994) Benzodiazepine screening using EMIT II and TDx: urine hydrolysis pretreatment required. J. Analyt. Toxicol. 18, 385–390.

    Article  CAS  Google Scholar 

  13. Simonsson, P., Liden, A., and Lindberg, S. (1995) Effect of ß-glucuronidase on urinary benzodiazepine concentration determined by fluorescence polarization immunoassay. Clin. Chem. 41, 920–923.

    PubMed  CAS  Google Scholar 

  14. Beck, O., Lin, Z., Brodin, K., Borg, S., and Hjemdahl, P. (1997) The online screening technique for urinary benzodiazepines: comparison with EMIT, FPIA, and GC-MS. J. Analvt. Toxicol. 21, 554–557.

    Article  CAS  Google Scholar 

  15. Wu, A. H. B., Wong, S. S., Johnson, K. G., et al. (1993) Evaluation of the Triage system for emergency drugs-of-abuse testing in urine. J. Analyt. Toxicol. 17, 241–245.

    Article  CAS  Google Scholar 

  16. SOFT (1997) Poster #35 Enhanced sensitivity for the CEDIA dau benzodiazepine screening assay. Salt Lake City, UT.

    Google Scholar 

  17. Schwenzer, K. S., Pearlman, R., Tsilimidos, M., Salamone, S. J., Cannon, R. C., Gock, S. B., and Wong, S. H. Y. (2001) New fluorescence polarization immunoassays for analysis of barbituates and benzodiazepines in serum and urine: performance characteristics. J. Analyt. Toxicol. 24, 726–732.

    Article  Google Scholar 

  18. Meatherall, R. (1994) Optimal enzymatic hydrolysis of urinary benzodiazepine conjugates. J. Analyt. Toxicol. 18, 382–384.

    Article  CAS  Google Scholar 

  19. Dou, C., Bournique, J. S., Zinda, M. K., Gnezda, M., McNally, A. J., and Salamone, S. J. (2001) Comparison of the rates of hydrolysis of lorazepam-glucuronide, oxazepam-glucuronide and temazepam-glucuronide catalyzed by E. coli. ß-D-glucuronidase using the online benzodiazepine screening immunoassay on the Roche/Hitachi 917 analyzer. J. Forensic Sci. 46, 335–340.

    PubMed  CAS  Google Scholar 

  20. Abbott Laboratories (1987) Product bulletin for TDx benzodiazepines, June 1987. Abbott Park, IL.

    Google Scholar 

  21. Baselt, R. C. and Cravey, R. H. (1995) Disposition of Toxic Drugs and Chemicals in Man, 4th edit., Chemical Toxicology Institute, Foster City, CA, pp. 432–433.

    Google Scholar 

  22. Greenblatt, D. J., Joyce, T. H., Comer, W. H., et al. (1977) Clinical pharmacokinetics of lorazepam: II. Intramuscular injection. Clin. Pharmacol. Ther. 21, 220–230.

    Google Scholar 

  23. Chang, J. (1985) Comment to the editor. Clin. Chem. 31, 152.

    Google Scholar 

  24. SOFT (1998) Workshop #7 Rohypnol Detection. Albuquerque, NM.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

St. Claire, T.N., Salamone, S.J. (2001). Immunoassay Detection of Benzodiazepines. In: Salamone, S.J. (eds) Benzodiazepines and GHB. Forensic Science and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-109-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-109-1_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-287-2

  • Online ISBN: 978-1-59259-109-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics