Skip to main content
Book cover

Myogenesis pp 267–281Cite as

Myogenesis in Drosophila melanogaster: Dissection of Distinct Muscle Types for Molecular Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1889))

Abstract

Drosophila is a useful model organism for studying the molecular signatures that define specific muscle types during myogenesis. It possesses significant genetic conservation with humans for muscle disease causing genes and a lack of redundancy that simplifies functional analysis. Traditional molecular methods can be utilized to understand muscle developmental processes such as Western blots, in situ hybridizations, RT-PCR and RNAseq, to name a few. However, one challenge for these molecular methods is the ability to dissect different muscle types. In this protocol we describe some useful techniques for extracting muscles from the pupal and adult stages of development using flight and jump muscles as an example.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bönnemann CG, Laing NG (2004) Myopathies resulting from mutations in sarcomeric proteins. Curr Opin Neurol 17(5):529–537

    Article  Google Scholar 

  2. D’Amico A, Bertini E (2008) Congenital myopathies. Curr Neurol Neurosci Rep 8:73–79

    Article  Google Scholar 

  3. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531

    Article  CAS  Google Scholar 

  4. Ariano MA, Armstrong RB, Edgerton VR (1973) Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem 21(1):51–55

    Article  CAS  Google Scholar 

  5. Smith RS, Ovalle WK Jr (1973) Varieties of fast and slow extrafusal muscle fibres in amphibian hind limb muscles. J Anat 116(Pt 1):1–24

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gleeson TT, Putnam RW, Bennett AF (1980) Histochemical, enzymatic, and contractile properties of skeletal muscle fibers in the lizard Dipsosaurus dorsalis. J Exp Zool 214(3):293–302

    Article  CAS  Google Scholar 

  7. Thorstensson A, Grimby G, Karlsson J (1976) Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol 40(1):12–16

    Article  CAS  Google Scholar 

  8. Harridge SD et al (1996) Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch 432(5):913–920

    Article  CAS  Google Scholar 

  9. Hoppeler H et al (1973) The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch 344(3):217–232

    Article  CAS  Google Scholar 

  10. Herbison GJ, Jaweed MM, Ditunno JF (1982) Muscle fiber types. Arch Phys Med Rehabil 63(5):227–230

    CAS  PubMed  Google Scholar 

  11. Rossi AC et al (2010) Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol 588(Pt 2):353–364

    Article  CAS  Google Scholar 

  12. Korfage JA, Van Eijden TM (2003) Myosin heavy-chain isoform composition of human single jaw-muscle fibers. J Dent Res 82(6):481–485

    Article  CAS  Google Scholar 

  13. Costill DL et al (1976) Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40(2):149–154

    Article  CAS  Google Scholar 

  14. Agudelo LZ et al (2014) Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159(1):33–45

    Article  CAS  Google Scholar 

  15. Butler-Browne GS, Whalen RG (1984) Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Dev Biol 102(2):324–334

    Article  CAS  Google Scholar 

  16. Ciciliot S et al (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45(10):2191–2199

    Article  CAS  Google Scholar 

  17. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50:11–16

    PubMed  Google Scholar 

  18. Oberbach A et al (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29(4):895–900

    Article  CAS  Google Scholar 

  19. Tanner CJ et al (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 282(6):E1191–E1196

    Article  CAS  Google Scholar 

  20. Bryantsev AL et al (2012) Differential requirements for myocyte enhancer factor-2 during adult myogenesis in Drosophila. Dev Biol 361(2):191–207

    Article  CAS  Google Scholar 

  21. Oas ST, Bryantsev AL, Cripps RM (2014) Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila. J Cell Biol 206(7):895–908

    Article  CAS  Google Scholar 

  22. Chechenova MB et al (2017) Functional redundancy and non-redundancy between two troponin C isoforms in Drosophila adult muscles. Mol Biol Cell 28:760

    Article  CAS  Google Scholar 

  23. Chechenova MB, Bryantsev AL, Cripps RM (2013) The Drosophila Z-disc protein Z(210) is an adult muscle isoform of Zasp52, which is required for normal myofibril organization in indirect flight muscles. J Biol Chem 288(6):3718–3726

    Article  CAS  Google Scholar 

  24. Bryantsev AL et al (2012) Extradenticle and homothorax control adult muscle fiber identity in Drosophila. Dev Cell 23(3):664–673

    Article  CAS  Google Scholar 

  25. Cripps RM, Sparrow JC (1992) Polymorphism in a Drosophila indirect flight muscle-specific tropomyosin isozyme does not affect flight ability. Biochem Genet 30:159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research at UNM is supported by grants from NIH/NIGMS: COBRE Center for Evolutionary and Theoretical Immunology (P30GM110907), the NIH (GM061738 and GM124498) and NSF (1518073) to R.M. Cripps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TyAnna L. Lovato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bryantsev, A.L., Castillo, L., Oas, S.T., Chechenova, M.B., Dohn, T.E., Lovato, T.L. (2019). Myogenesis in Drosophila melanogaster: Dissection of Distinct Muscle Types for Molecular Analysis. In: Rønning, S. (eds) Myogenesis. Methods in Molecular Biology, vol 1889. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8897-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8897-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8896-9

  • Online ISBN: 978-1-4939-8897-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics