Skip to main content

Identification and Isolation of Mice and Human Hematopoietic Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1842))

Abstract

Hematopoietic stem cells (HSCs) are multipotent cells capable of differentiating into all types of blood cells. The important feature of the HSCs is their ability to repopulate the complete blood cells after BM ablation. For clinical application, cord blood derived HSCs and G-CSF mobilized peripheral blood HSCs are good alternative to bone marrow HSCs. For immunological and hematological studies the obvious choice of model organism is Mouse. Therefore, understanding HSCs in murine model is important. In this chapter, we describe the common/currently used methods to isolate and identify human and mouse HSCs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62

    Article  CAS  PubMed  Google Scholar 

  2. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–673

    Article  CAS  PubMed  Google Scholar 

  3. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98:14541–14546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boyer SW, Schroeder AV, Smith-Berdan S et al (2011) All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell 9:64–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morita Y, Ema H, Nakauchi H (2010) Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 207:1173–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang L, Bryder D, Adolfsson J et al (2005) Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105:2717–2723

    Article  CAS  PubMed  Google Scholar 

  7. Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  PubMed  Google Scholar 

  8. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13(1):102–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCune JM, Namikawa R, Kaneshima H et al (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639

    Article  CAS  PubMed  Google Scholar 

  10. Link H, Arseniev L, Bahre O et al (1996) Transplantation of allogeneic CD34+ blood cells. Blood 87(11):4903–4909

    PubMed  CAS  Google Scholar 

  11. Michallet M, Philip T, Philip I et al (2000) Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Exp Hematol 28:858–870

    Article  CAS  PubMed  Google Scholar 

  12. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A 89:2804–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peault B, Weissman I, Baum C (1993) Analysis of candidate human blood stem cells in “humanized” immune-deficiency SCID mice. Leukemia 7(Suppl 2):S98–S101

    PubMed  Google Scholar 

  14. Murray L, Chen B, Galy A et al (1995) Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin- subpopulation from mobilized peripheral blood. Blood 85:368–378

    PubMed  CAS  Google Scholar 

  15. Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1(6):635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Notta F, Doulatov S, Laurenti E et al (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333(6039):218–221

    Article  CAS  PubMed  Google Scholar 

  17. Goodell MA, Rosenzweig M, Kim H et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3(12):1337–1345

    Article  CAS  PubMed  Google Scholar 

  18. Ergen AV, Jeong M, Lin KK et al (2013) Isolation and characterization of mouse side population cells. Methods Mol Biol 946:151–162

    Article  CAS  PubMed  Google Scholar 

  19. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101(39):14228–14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim M, Cooper DD, Hayes SF et al (1998) Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 91(11):4106–4117

    PubMed  CAS  Google Scholar 

  21. McKenzie JL, Takenaka K, Gan OI et al (2007) Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34+CD38 population. Blood 109:543–545

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijender Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, B., Madabushi, S.S. (2018). Identification and Isolation of Mice and Human Hematopoietic Stem Cells. In: Singh, S., Rameshwar, P. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 1842. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8697-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8697-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8696-5

  • Online ISBN: 978-1-4939-8697-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics