Skip to main content

Quantitative Analysis of Intestinal Stem Cell Dynamics Using Microfabricated Cell Culture Arrays

  • Protocol
  • First Online:
Somatic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1842))

Abstract

Regeneration of intestinal epithelium is fueled by a heterogeneous population of rapidly proliferating stem cells (ISCs) found in the base of the small intestine and colonic crypts. ISCs populations can be enriched by fluorescence-activated cell sorting (FACS) based on expression of combinatorial cell surface markers, and fluorescent transgenes. Conventional ISC culture is performed by embedding single ISCs or whole crypt units in a matrix and culturing in conditions that stimulate or repress key pathways to recapitulate ISC niche signaling. Cultured ISCs form organoid, which are spherical, epithelial monolayers that are self-renewing, self-patterning, and demonstrate the full complement of intestinal epithelial cell lineages. However, this conventional “bulk” approach to studying ISC biology is often semiquantitative, low throughput, and masks clonal effects and ISC phenotypic heterogeneity. Our group has recently reported the construction, long-term biocompatibility, and use of microfabricated cell raft arrays (CRA) for high-throughput analysis of single ISCs and organoids. CRAs are composed of thousands of indexed and independently retrievable microwells, which in combination with time-lapse microscopy and/or gene-expression analyses are a powerful tool for studying clonal ISC dynamics and micro-niches. In this protocol, we describe how CRAs are used as an adaptable experimental platform to study the effect of exogenous factors on clonal stem cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141(4):537–561

    Article  CAS  PubMed  Google Scholar 

  2. Gracz AD, Magness ST (2014) Defining hierarchies of stemness in the intestine: evidence from biomarkers and regulatory pathways. Am J Physiol Gastrointest Liver Physiol 307(3):G260–G273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henning SJ, von Furstenberg RJ (2016) GI stem cells - new insights into roles in physiology and pathophysiology. J Physiol 594(17):4769–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright, N.A., The biology of epithelial cell populations. M. Alison. 1984, Oxford: Oxford Science Publications

    Google Scholar 

  5. Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  CAS  PubMed  Google Scholar 

  6. Barker N et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  CAS  Google Scholar 

  7. Muñoz J et al (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 31(14):3079–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gracz AD, Ramalingam S, Magness ST (2010) Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am J Physiol Gastrointest Liver Physiol 298(5):G590–G600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Formeister EJ et al (2009) Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol 296(5):G1108–G1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roche KC et al (2015) SOX9 maintains reserve stem cells and preserves radioresistance in mouse small intestine. Gastroenterology 149(6):1553–1563.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Es JH et al (2012) Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14(10):1099–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gracz AD, Puthoff BJ, Magness ST (2012) Identification, isolation, and culture of intestinal epithelial stem cells from murine intestine. Methods Mol Biol 879:89–107

    Article  CAS  PubMed  Google Scholar 

  13. von Furstenberg RJ et al (2011) Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 300(3):G409–G417

    Article  CAS  Google Scholar 

  14. Gonzalez LM, Williamson I, Piedrahita JA, Blikslager AT, Magness ST (2013) Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration. PLoS One 8(6):e66465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gracz AD et al (2013) Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells 31(9):2024–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramalingam S, Daughtridge GW, Johnston MJ, Gracz AD, Magness ST (2012) Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture. Am J Physiol Gastrointest Liver Physiol 302(1):G10–G20

    Article  CAS  PubMed  Google Scholar 

  17. Stelzner M et al (2012) A nomenclature for intestinal in vitro cultures. Am J Physiol Gastrointest Liver Physiol 302(12):G1359–G1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sato T et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418

    Article  CAS  PubMed  Google Scholar 

  19. Yin X et al (2014) Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 11(1):106–112

    Article  CAS  PubMed  Google Scholar 

  20. Gjorevski N et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539(7630):560–564

    Article  CAS  PubMed  Google Scholar 

  21. Sachs N, Tsukamoto Y, Kujala P, Peters PJ, Clevers H (2017) Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development 144(6):1107–1112

    Article  CAS  PubMed  Google Scholar 

  22. Gracz AD et al (2015) A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nat Cell Biol 17(3):340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Attayek PJ et al (2015) Array-based platform to select, release, and capture Epstein-Barr virus-infected cells based on intercellular adhesion. Anal Chem 87(24):12281–12289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Y et al (2010) Micromolded arrays for separation of adherent cells. Lab Chip 10(21):2917–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vintersten K et al (2004) Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40(4):241–246

    Article  CAS  PubMed  Google Scholar 

  26. Gong S et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925

    Article  CAS  PubMed  Google Scholar 

  27. Kamentsky L et al (2011) Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carpenter AE et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sato T, Clevers H (2013) Primary mouse small intestinal epithelial cell cultures. In: Randell SH, Fulcher ML (eds) Epithelial cell culture protocols, 2nd edn. Humana Press, Totowa, NJ, pp 319–328

    Google Scholar 

Download references

Acknowledgments

We would like to thank Eric Bankaitis, Ph.D. and Bailey Zwarcyz, MS for critical reading of the manuscript. Additionally, we would like to acknowledge Adam Gracz, Ph.D. for his work in developing the crypt and villus-enrichment methodology used here. We acknowledge all authors who contributed to the publication of this protocol which is based on “A high-throughput platform for stem cell-niche cocultures and downstream expression analysis” published in Nature Cell Biology 2016, 17(3): 340-349. The original work described in this chapter was funded by the National Institutes of Health, R01 DK091427 (Magness), R03 EB013803 (Y. Wang/Magness), R01 EB012549 (Allbritton), Small Business Innovation Research R43 GM106421 (Y. Wang/Magness), U01 DK085507-01 (Li), University Cancer Research Fund of the University of North Carolina (Magness/Allbritton), and the Center for Gastrointestinal Biology and Disease P30 DK034987 (Magness, Y. Wang, Galanko).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T. Magness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Samsa, L.A., Williamson, I.A., Magness, S.T. (2018). Quantitative Analysis of Intestinal Stem Cell Dynamics Using Microfabricated Cell Culture Arrays. In: Singh, S., Rameshwar, P. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 1842. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8697-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8697-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8696-5

  • Online ISBN: 978-1-4939-8697-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics