Skip to main content

Carbohydrate Esterases: An Overview

  • Protocol
  • First Online:
Lipases and Phospholipases

Abstract

Carbohydrate esterases are a group of enzymes which release acyl or alkyl groups attached by ester linkage to carbohydrates. The CAZy database, which classifies enzymes that assemble, modify, and break down carbohydrates and glycoconjugates, classifies all carbohydrate esterases into 16 families. This chapter is an overview of the research for nearly 50 years around the main groups of carbohydrate esterases dealing with the degradation of polysaccharides, their main biochemical and molecular traits, as well as its application for the synthesis of high added value esters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornscheuer UT, Kazlauskas RJ (eds) (1999) Hydrolases in organic synthesis: regio- and stereoselective biotransformations. Weinheim, Chichester

    Google Scholar 

  2. Anthonsen H, Baptista A, Drabløs F et al (1995) Lipases and esterases: a review of their sequences, structure and evolution. Biotechnol Annu Rev 1:315–371

    Article  PubMed  CAS  Google Scholar 

  3. Lockridge O, Quinn D (2010) Esterases. In: McQueen C (ed) Comprehensive toxicology, 2nd edn. Elsevier Ltd, Oxford

    Google Scholar 

  4. Aurilia V, Parracino A, D'Auria S (2008) Microbial carbohydrate esterases in cold adapted environments. Gene 410:234–240

    Article  PubMed  CAS  Google Scholar 

  5. Ollis D, Cheah E, Cygler M et al (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    Article  PubMed  CAS  Google Scholar 

  6. Casas-Godoy L, Duquesne S, Bordes F et al (2012) Lipases: An overview. In: Sandoval G (ed) Lipases and Phospholipases. Humana Press, New York

    Google Scholar 

  7. Dodson G, Wlodawer A (1998) Catalytic triads and their relatives. Trends Biochem Sci 23:347–352

    Article  PubMed  CAS  Google Scholar 

  8. Topakas E, Paul C (2007) Microbial xylanolytic carbohydrate esterases. In: Polaina J (ed) Industrial enzymes: structure, function and applications. Springer Netherlands, Dordrecht

    Google Scholar 

  9. Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  10. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  PubMed  CAS  Google Scholar 

  11. Austin PR, Brine CJ, Castle JE et al (1981) Chitin: new facets of research. Science 212:749–753

    Article  PubMed  CAS  Google Scholar 

  12. Tsigos I, Martinou A, Kafetzopoulos D et al (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 18:305–312

    Article  PubMed  CAS  Google Scholar 

  13. Voragen AGJ, Coenen G, Verhoef RP et al (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275

    Article  CAS  Google Scholar 

  14. Berlanga-Reyes CM, Carvajal-Millan E, Hicks KB et al (2014) Protein/arabinoxylans gels: effect of mass ratio on the rheological, microstructural and diffusional characteristics. Int J Mol Sci 15:19106–19118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Raval R, Keyur R, Moerschbacher BM (2013) Enzymatic modification of chitosan using chitin deacetylase isolated from Bacillus cereus. doi:https://doi.org/10.4172/scientificreports.617

  16. Hirano S (1996) Chitin biotechnology applications. Biotechnol Annu Rev 2:237–258

    Article  PubMed  CAS  Google Scholar 

  17. Yong Z, Wan-Taek J, Gyung-Hyun J et al (2011) Perspectives of chitin deacetylase research. In: Elnashar M (ed) Biotechnology of Biopolymers. InTech. doi:https://doi.org/10.5772/18966

  18. Blair DE, Hekmat O, Schüttelkopf AW et al (2006) Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Biochemistry 45:9416–9426

    Article  PubMed  CAS  Google Scholar 

  19. Hernick M, Fierke CA (2005) Zinc hydrolases: the mechanisms of zinc-dependent deacetylases. Arch Biochem Biophys 433:71–84

    Article  PubMed  CAS  Google Scholar 

  20. Kafetzopoulos D, Martinou A, Bouriotis V (1993) Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci U S A 90:2564–2568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Caufrier F, Martinou A, Dupont C et al (2003) Carbohydrate esterase family 4 enzymes: substrate specificity. Carbohydr Res 338:687–692

    Article  PubMed  CAS  Google Scholar 

  22. Tokuyasu K, Mitsutomi M, Yamaguchi I et al (2000) Recognition of chitooligosaccharides and their N-acetyl groups by putative subsites of chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum. Biochemistry 39:8837–8843

    Article  PubMed  CAS  Google Scholar 

  23. Tokuyasu K, Ohnishi-Kameyama M, Hayashi K (1996) Purification and characterization of extracellular chitin deacetylase from Colletotrichum lindemuthianum. Biosci Biotechnol Biochem 60:1598–1603

    Article  PubMed  CAS  Google Scholar 

  24. Kauss H, Jeblick W, Young DH (1983) Chitin deacetylase from the plant pathogen Colletotrichum lindemuthianum. Plant Sci Lett 28:231–236

    Article  CAS  Google Scholar 

  25. Alfonso C, Nuero OM, Santamaria F et al (1995) Purification of a heat-stable chitin deacetylase from Aspergillus nidulans and its role in cell wall degradation. Curr Microbiol 30:49–54

    Article  PubMed  CAS  Google Scholar 

  26. Mishra C, Semino CE, McCreath KJ et al (1997) Cloning and expression of two chitin deacetylase genes of Saccharomyces cerevisiae. Yeast 13:327–336

    Article  PubMed  CAS  Google Scholar 

  27. Tokuyasu K, Kaneko S, Hayashi K et al (1999) Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells. FEBS Lett 458:23–26

    Article  PubMed  CAS  Google Scholar 

  28. Naqvi S, Cord-Landwehr S, Singh R et al (2016) A recombinant fungal chitin deacetylase produces fully defined chitosan oligomers with novel patterns of acetylation. Appl Environ Microbiol 82:6645–6655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  PubMed  CAS  Google Scholar 

  30. Vincken JP, Schols HA, Oomen RJ et al (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ovodov YS (2009) Current views on pectin substances. Russ J Bioorg Chem 35:269–284

    Article  CAS  Google Scholar 

  32. Ludwig IA, Clifford MN, Lean ME et al (2014) Coffee: biochemistry and potential impact on health. Food Funct 5:1695–1717

    Article  PubMed  CAS  Google Scholar 

  33. Boraston AB, Abbott DW (2012) Structure of a pectin methylesterase from Yersinia enterocolitica. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:129–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Eklöf JM, Tan TC, Divne C et al (2009) The crystal structure of the outer membrane lipoprotein YbhC from Escherichia coli sheds new light on the phylogeny of carbohydrate esterase family 8. Proteins 76:1029–1036

    Article  PubMed  CAS  Google Scholar 

  35. Jenkins J, Mayans O, Smith D et al (2001) Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. J Mol Biol 305:951–960

    Article  PubMed  CAS  Google Scholar 

  36. Johansson K, El-Ahmad M, Friemann R et al (2002) Crystal structure of plant pectin methylesterase. FEBS Lett 514:243–249

    Article  PubMed  CAS  Google Scholar 

  37. Kent LM, Loo TS, Melton LD et al (2016) Structure and properties of a non-processive, salt-requiring, and acidophilic pectin methylesterase from Aspergillus niger provide insights into the key determinants of processivity control. J Biol Chem 291:1289–1306

    Article  PubMed  CAS  Google Scholar 

  38. Frenkel C, Peters JS, Tieman DM et al (1998) Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. J Biol Chem 273:4293–4295

    Article  PubMed  CAS  Google Scholar 

  39. Fries M, Ihrig J, Brocklehurst K et al (2007) Molecular basis of the activity of the phytopathogen pectin methylesterase. EMBO J 26:3879–3887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kohli P, Manmohit K, Gupta R (2015) Pectin methylesterases: a review. J Bioprocess Biotech 5:5. https://doi.org/10.4172/2155-9821.1000227

    Article  CAS  Google Scholar 

  41. Breton C, Bordenave M, Richard L et al (1996) PCR cloning and expression analysis of a cDNA encoding a pectinacetylesterase from Vigna radiata L. FEBS Lett 388:139–142

    Article  PubMed  CAS  Google Scholar 

  42. Gou JY, Miller LM, Hou G et al (2012) Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24:50–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vaughn RH, Jakubczyk T, MacMillan JD et al (1969) Some pink yeasts associated with softening of olives. Appl Microbiol 18:771–775

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  PubMed  CAS  Google Scholar 

  45. Biely P (1985) Microbial xylanolytic system. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  46. Kormelink FJM, Lefebvre B, Strozyk F et al (1993) Purification and characterization of an acetyl xylan esterase from Aspergillus niger. J Biotechnol 27:267–282

    Article  CAS  Google Scholar 

  47. Koseki T, Miwa Y, Akao T et al (2006) An Aspergillus oryzae acetyl xylan esterase: molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris. J Biotechnol 121:381–389

    Article  PubMed  CAS  Google Scholar 

  48. Koseki T, Furuse S, Iwano K et al (1997) An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J 326:485–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Halgasová N, Kutejová E, Timko J (1994) Purification and some characteristics of the acetylxylan esterase from Schizophyllum commune. Biochem J 298:751–755

    Article  PubMed  PubMed Central  Google Scholar 

  50. Egana L, Gutierrez R, Caputo V et al (1996) Purification and characterization of two acetyl xylan esterases from Penicillium purpurogenum. Biotechnol Appl Biochem 24(Pt 1):33–39

    PubMed  CAS  Google Scholar 

  51. Ferreira LM, Wood TM, Williamson G et al (1993) A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. Biochem J 294:349–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dalrymple BP, Swadling Y (1997) Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl esterase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology 143:1203–1210

    Article  PubMed  CAS  Google Scholar 

  53. Hall J, Hazlewood GP, Baker PJ et al (1988) Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69:29–38

    Article  PubMed  CAS  Google Scholar 

  54. Zhang J-X, Martin J, Flint HJ (1994) Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet 254:260–264

    Google Scholar 

  55. Tsujibo H, Ohtsuki T, Ito T et al (1997) Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol 63:661–664

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Kosugi A, Murashima K, Doi RH (2002) Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl Environ Microbiol 68:6399–6402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hakulinen N, Tenkanen M, Rouvinen J (2000) Three-dimensional structure of the catalytic core of acetyl xylan esterase from Trichoderma reesei: insights into the deacetylation mechanism. J Struct Biol 132:180–190

    Article  PubMed  CAS  Google Scholar 

  58. Ghosh D, Sawichi M, Lala P et al (2001) Multiple conformation of catalytic serine and histidine in acetyl xylan esterase at 0.90 Å. J Biol Chem 276:11,159–11,166

    Article  CAS  Google Scholar 

  59. Shao W, Wiegel J (1995) Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL YS485. Appl Environ Microbiol 61:729–733

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Nelson KE, Clayton RA, Gill SR et al (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  61. Krastanova I, Guarnaccia C, Zahariev S et al (2005) Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus. Biochem Biophys Acta 1748:222–230

    PubMed  CAS  Google Scholar 

  62. Vincent F, Charnock SJ, Verschueren KHG et al (2003) Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9 Å resolution. J Mol Biol 330:593–606

    Article  PubMed  CAS  Google Scholar 

  63. Ramírez-Velasco L, Armendáriz-Ruiz M, Rodríguez-González JA et al (2016) From classical to high throughput screening methods for feruloyl esterases: a review. Comb Chem High Throughput Screen 19:616–626

    Article  PubMed  CAS  Google Scholar 

  64. Williamson G, Faulds CB, Kroon PA (1998) Specificity of ferulic acid (feruloyl) esterases. Biochem Soc Trans 26:205–209

    Article  PubMed  CAS  Google Scholar 

  65. Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652

    Article  PubMed  CAS  Google Scholar 

  66. Levasseur A, Gouret P, Lesage-Meessen L et al (2006) Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase A family. BMC Evol Biol 6:92. https://doi.org/10.1186/1471-2148-6-92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mackenzie CR, Bilous D, Schneider H et al (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl Environ Microbiol 53:2835–2839

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Upadhyay R, Mohan Rao LJ (2013) An outlook on chlorogenic acids—occurrence, chemistry, technology, and biological activities. Crit Rev Food Sci Nutr 53:968–984

    Article  PubMed  CAS  Google Scholar 

  69. Okamura S, Watanabe M (1982) Purification and properties of hydroxycinnamic acid ester hydrolase from Aspergillus japonicus. Agric Biol Chem 46:1839–1848

    CAS  Google Scholar 

  70. Asther M, Estrada Alvarado MI et al (2005) Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid. J Biotechnol 115:47–56

    Article  PubMed  CAS  Google Scholar 

  71. Benoit I, Asther M, Bourne Y et al (2007) Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from Aspergillus niger. Appl Environ Microbiol 73:5624–5632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Nieter A, Haase-Aschoff P, Kelle S et al (2015) A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis. Appl Environ Microbiol 81:1679–1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Biely P, Wong KKY, Suckling ID et al (2003) Transacetylations to carbohydrates catalyzed by acetyl xylan esterase in the presence of organic solvent. Biochem Biophys Acta 1623:62–71

    Article  PubMed  CAS  Google Scholar 

  74. Park SM (2011) Acetyl xylan esterase of Aspergillus ficcum catalyzed the synthesis of peracetic acid from ethyl acetate and hydrogen peroxide. J Biosci Bioeng 112:473–475

    Article  PubMed  CAS  Google Scholar 

  75. Kishimoto N, Kakino Y, Iwai K et al (2005) Chlorogenate hydrolase-catalyzed synthesis of hydroxycinnamic acid ester derivatives by transesterification, substitution of bromine, and condensation reactions. Appl Microbiol Biotechnol 68:198–202

    Article  PubMed  CAS  Google Scholar 

  76. Son S, Lobkowsky EB, Lewis BA (2001) Caffeic acid phenethyl ester (CAPE): synthesis and X-ray crystallographic analysis. Chem Pharm Bull(Tokyo) 49:236–238

    Article  CAS  Google Scholar 

  77. Giuliani S, Piana C, Setti L et al (2001) Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil microemulsions. Biotechnol Lett 23:325–330

    Article  CAS  Google Scholar 

  78. Vafiadi C, Topakas E, Alissandratos A et al (2008) Enzymatic synthesis of butyl hydroxycinnamates and their inhibitory effects on LDL-oxidation. J Biotechnol 133:497–504

    Article  PubMed  CAS  Google Scholar 

  79. Vafiadi C, Topakas E, Wong KKY et al (2005) Mapping the hydrolytic and synthetic selectivity of a type C feruloyl esterase (StFaeC) from Sporotrichum thermophile using alkyl ferulates. Tetrahedron Asymmetry 16:373–379

    Article  CAS  Google Scholar 

  80. Topakas E, Vafiadi C, Stamatis H et al (2005) Sporotrichum thermophile type C feruloyl esterase (StFaeC): purification characterization, and its use for phenolic acid (sugar) ester synthesis. Enzyme Microb Technol 36:729–736

    Article  CAS  Google Scholar 

  81. Vafiadi C, Topakas E, Christakopoulos P et al (2006) The feruloyl esterase system of Talaromyces stipitatus: determining the hydrolytic and synthetic specificity of TsFaeC. J Biotechnol 125:210–221

    Article  PubMed  CAS  Google Scholar 

  82. Antonopoulou I, Leonov L, Jütten P et al (2017) Optimized synthesis of novel prenyl ferulate performed by feruloyl esterases from Myceliophthora thermophila in microemulsions. Appl Microbiol Biotechnol 101:3213–3226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Topakas E, Stamatis H, Mastihubova M et al (2003) Purification and characterization of a Fusarium oxysporum feruloyl esterase (FoFAE-I) catalysing transesterification of phenolic acid esters. Enzyme Microb Technol 33:729–737

    Article  CAS  Google Scholar 

  84. Topakas E, Stamatis H, Biely P et al (2003) Purification and characterization of a feruloyl esterase from Fusarium oxysporum catalyzing esterification of phenolic acids in ternary water-organic solvent mixtures. J Biotechnol 102:33–44

    Article  PubMed  CAS  Google Scholar 

  85. Thörn C, Gustafsson H, Olsson L (2011) Immobilization of feruloyl esterases in mesoporous materials leads to improved transesterification yield. J Mol Catal B: Enzym 72:57–64

    Article  CAS  Google Scholar 

  86. Topakas E, Christakopoulos P, Faulds CB (2005) Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates. J Biotechnol 115:355–366

    Article  PubMed  CAS  Google Scholar 

  87. Topakas E, Stamatis H, Biely P et al (2004) Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile. Appl Microbiol Biotechnol 63:686–690

    Article  PubMed  CAS  Google Scholar 

  88. Vafiadi C, Topakas E, Nahmias VR et al (2009) Feruloyl esterase-catalysed synthesis of glycerol sinapate using ionic liquids mixtures. J Biotechnol 139:124–129

    Article  PubMed  CAS  Google Scholar 

  89. Tsuchiyama M, Sakamoto T, Tanimori S et al (2007) Enzymatic synthesis of hydroxycinnamic acid glycerol esters using type A feruloyl esterase from Aspergillus niger. Biosci Biotechnol Biochem 71:2606–2609

    Article  PubMed  CAS  Google Scholar 

  90. Tsuchiyama M, Sakamoto T, Fujita T et al (2006) Esterification of ferulic acid with polyols using a ferulic acid esterase from Aspergillus niger. Biochim Biophys Acta 1760:1071–1079

    Article  PubMed  CAS  Google Scholar 

  91. Vafiadi C, Topakas E, Alderwick LJ et al (2007) Chemoenzymatic synthesis of feruloyl D-arabinose as a potential anti-mycobacterial agent. Biotechnol Lett 29:1771–1774

    Article  PubMed  CAS  Google Scholar 

  92. Kelle S, Nieter A, Krings U et al (2016) Heterologous production of a feruloyl esterase from Pleurotus sapidus synthesizing feruloyl-saccharide esters. Biotechnol Appl Biochem 63:852–862

    Article  PubMed  CAS  Google Scholar 

  93. Couto J, St-Louis R, Karboune S (2011) Optimization of feruloyl esterase-catalyzed synthesis of feruloylated oligosaccharides by response surface methodology. J Mol Catal B: Enzym 73:53–62

    Article  CAS  Google Scholar 

  94. Couto J, Karboune S, Mathew R (2010) Regioselective synthesis of feruloylated glycosides using the feruloyl esterases expressed in selected commercial multi-enzymatic preparations as biocatalysts. Biocatal Biotransformation 28:235–244

    Article  CAS  Google Scholar 

  95. Hatzakis NS, Daphnomili D, Smonou I (2003) Ferulic acid esterase from Humicola insolens catalyzes enantioselective transesterification of secondary alcohols. J Mol Catal B: Enzym 21:309–311

    Article  CAS  Google Scholar 

  96. Nakamura AM, Nascimento AS, Polikarpov I (2017) Structural diversity of carbohydrate esterases. Biotechnol Res Innov 1:35–51. https://doi.org/10.1016/j.biori.2017.02.001

    Article  Google Scholar 

  97. Gao XD, Katsumoto T, Onodera K (1995) Purification and characterization of chitin deacetylase from Absidia coerulea. J Biochem 117:257–263

    Article  PubMed  CAS  Google Scholar 

  98. Tsigos I, Bouriotis V (1995) Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. J Biol Chem 270:26286–26291

    Article  PubMed  CAS  Google Scholar 

  99. Shrestha B, Blondeau K, Stevens WF et al (2004) Expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris: purification and characterization. Protein Expr Purif 38:196–204

    Article  PubMed  CAS  Google Scholar 

  100. Baker LG, Specht CA, Donlin MJ et al (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6:855–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Brosson D, Kuhn L, Prensier G et al (2005) The putative chitin deacetylase of Encephalitozoon cuniculi: a surface protein implicated in microsporidian spore-wall formation. FEMS Microbiol Lett 247:81–90

    Article  PubMed  CAS  Google Scholar 

  102. Yamada M, Kurano M, Inatomi S et al (2008) Isolation and characterization of a gene coding for chitin deacetylase specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes and its expression in the yeast Pichia pastoris. FEMS Microbiol Lett 289:130–137

    Article  PubMed  CAS  Google Scholar 

  103. Kim YJ, Zhao Y, Oh KT et al (2008) Enzymatic deacetylation of chitin by extracellular chitin deacetylase from a newly screened Mortierella sp. DY-52. J Microbiol Biotechnol 18:759–766

    PubMed  CAS  Google Scholar 

  104. Nahar P, Ghormade V, Deshpande MV (2004) The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J Invertebr Pathol 85:80–88

    Article  PubMed  CAS  Google Scholar 

  105. Gauthier C, Clerisse F, Dommes J et al (2008) Characterization and cloning of chitin deacetylases from Rhizopus circinans. Protein Expr Purif 59:127–137

    Article  PubMed  CAS  Google Scholar 

  106. Jeraj N, Kunič B, Lenasi H et al (2006) Purification and molecular characterization of chitin deacetylase from Rhizopus nigricans. Enzyme Microb Technol 39:1294–1299

    Article  CAS  Google Scholar 

  107. Martinou A, Koutsioulis D, Bouriotis V (2002) Expression, purification, and characterization of a cobalt-activated chitin deacetylase (Cda2p) from Saccharomyces cerevisiae. Protein Expr Purif 24:111–116

    Article  PubMed  CAS  Google Scholar 

  108. Cai J, Yang J, Du Y et al (2006) Purification and characterization of chitin deacetylase from Scopulariopsis brevicaulis. Carbohydr Polym 65:211–217

    Article  CAS  Google Scholar 

  109. Matsuo Y, Tanaka K, Matsuda H et al (2005) cda1+, encoding chitin deacetylase is required for proper spore formation in Schizosaccharomyces pombe. FEBS Lett 579:2737–2743

    Article  PubMed  CAS  Google Scholar 

  110. Macdonald HM, Evans R (1996) Purification and properties of apple pectinesterase. J Sci Food Agric 70:321–326

    Article  CAS  Google Scholar 

  111. Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38

    Article  PubMed  CAS  Google Scholar 

  112. Semenova MV, Grishutin SG, Gusakov AV et al (2003) Isolation and properties of pectinases from the fungus Aspergillus japonicus. Biochemistry (Mosc) 68:559–569

    Article  CAS  Google Scholar 

  113. Teller DC, Behnke CA, Pappan K et al (2014) The structure of rice weevil pectin methylesterase. Acta Crystallogr F Struct Biol Commun 70:1480–1484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Di Matteo A, Giovane A, Raiola A et al (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Giovane A, Quagliuolo L, Castaldo D et al (1990) Pectin methyl esterase from Actinidia chinensis fruits. Phytochemistry 29:2821–2823

    Article  CAS  Google Scholar 

  116. Shevchik VE, Hugouvieux-Cotte-Pattat N (2003) PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937. J Bacteriol 185:3091–3100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Williamson G (1991) Purification and characterization of pectin acetylesterase from orange peel. Phytochemistry 30:445–449

    Article  CAS  Google Scholar 

  118. Bolvig PU, Pauly M, Orfila C et al (2003) Sequence analysis and characterisation of a novel pectin acetyl esterase from Bacillus Subtilis. In: Voragen F (ed) Advances in pectin and pectinase research. Springer, Dordrecht, Netherlands

    Google Scholar 

  119. Qi M, Wang P, Selinger LB et al (2011) Isolation and characterization of a ferulic acid esterase (Fae1A) from the rumen fungus Anaeromyces mucronatus. J Appl Microbiol 110:1341–1350

    Article  PubMed  CAS  Google Scholar 

  120. Damásio ARL, Braga CMP, Brenelli LB et al (2013) Biomass to bio products application of feruloyl esterase from Aspergillus clavatus. Appl Microbiol Biotechnol 97:6759–6767

    Article  PubMed  CAS  Google Scholar 

  121. Zhang S, Zhai H, Wang L et al (2013) Expression, purification and characterization of a feruloyl esterase A from Aspergillus flavus. Protein Expr Purif 92:36–40

    Article  PubMed  CAS  Google Scholar 

  122. Faulds CB, Williamson G (1993) Ferulic acid esterase from Aspergillus niger: purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol Appl Biochem 17(Pt 3):349–359

    PubMed  CAS  Google Scholar 

  123. Dilokpimol A, Mäkelä MR, Mansouri S et al (2017) Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. N Biotechnol 37(Part B):200–209

    Article  PubMed  CAS  Google Scholar 

  124. Koseki T, Hori A, Seki S et al (2009) Characterization of two distinct feruloyl esterases, AoFaeB and AoFaeC, from Aspergillus oryzae. Appl Microbiol Biotechnol 83:689–696

    Article  PubMed  CAS  Google Scholar 

  125. Koseki T, Handa H, Watanabe Y et al (2016) An unusual feruloyl esterase from Aspergillus oryzae: two tryptophan residues play a crucial role for the activity. J Mol Catal B: Enzym:S560–S568. https://doi.org/10.1016/j.molcatb.2016.11.008

  126. Adachi O, Ano Y, Akakabe Y et al (2008) Coffee pulp koji of Aspergillus sojae as stable immobilized catalyst of chlorogenate hydrolase. Appl Microbiol Biotechnol 81:143–151

    Article  PubMed  CAS  Google Scholar 

  127. Zhang S, Wang L, Liu YH et al (2015) Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expr Purif 115:153–157

    Article  PubMed  CAS  Google Scholar 

  128. Kumar CG, Kamle A, Kamal A (2013) Purification and biochemical characterization of feruloyl esterases from Aspergillus terreus MTCC 11096. Biotechnol Prog 29:924–932

    Article  PubMed  CAS  Google Scholar 

  129. Negrel J, Javelle F, Morandi D et al (2016) Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots. Plant Physiol Biochem 109:308–318

    Article  PubMed  CAS  Google Scholar 

  130. Wang X, Bai Y, Cai Y et al (2017) Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process Biochem 53:109–115

    Article  CAS  Google Scholar 

  131. Goldstone DC, Villas-Bôas SG, Till M et al (2010) Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins 78:1457–1469

    PubMed  CAS  Google Scholar 

  132. Yang S, Tang L, Yan Q et al (2013) Biochemical characteristics and gene cloning of a novel thermostable feruloyl esterase from Chaetomium sp. J Mol Catal B: Enzym 97:328–336

    Article  CAS  Google Scholar 

  133. Moukouli M, Topakas E, Christakopoulos P (2008) Cloning, characterization and functional expression of an alkalitolerant type C feruloyl esterase from Fusarium oxysporum. Appl Microbiol Biotechnol 79:245–254

    Article  PubMed  CAS  Google Scholar 

  134. Wang L, Li Z, Zhu M et al (2016) An acidic feruloyl esterase from the mushroom Lactarius hatsudake: a potential animal feed supplement. Int J Biol Macromol 93(Part A):290–295

    Article  PubMed  CAS  Google Scholar 

  135. Lai KK, Lorca GL, Gonzalez CF (2009) Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Appl Environ Microbiol 75:5018–5024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Esteban-Torres M, Reverón I, Mancheño JM et al (2013) Characterization of a feruloyl esterase from Lactobacillus plantarum. Appl Environ Microbiol 79:5130–5136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Yao J, Chen QL, Shen AX et al (2013) A novel feruloyl esterase from a soil metagenomic library with tannase activity. J Mol Catal B: Enzym 95:55–61

    Article  CAS  Google Scholar 

  138. Gao L, Wang M, Chen S et al (2017) Biochemical characterization of a novel feruloyl esterase from Penicillium piceum and its application in biomass bioconversion. J Mol Catal B: Enzym 133:S388–S394. https://doi.org/10.1016/j.molcatb.2017.02.012

    Article  Google Scholar 

  139. Nieter A, Haase-Aschoff P, Linke D et al (2014) A halotolerant type A feruloyl esterase from Pleurotus eryngii. Fungal Biol 118:348–357

    Article  PubMed  CAS  Google Scholar 

  140. Nieter A, Kelle S, Linke D et al (2017) A p-coumaroyl esterase from Rhizoctonia solani with a pronounced chlorogenic acid esterase activity. N Biotechnol 37(Part B):153–161

    Article  PubMed  CAS  Google Scholar 

  141. Nieter A, Kelle S, Takenberg M et al (2016) Heterologous production and characterization of a chlorogenic acid esterase from Ustilago maydis with a potential use in baking. Food Chem 209:1–9

    Article  PubMed  CAS  Google Scholar 

  142. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Mateos-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Armendáriz-Ruiz, M., Rodríguez-González, J.A., Camacho-Ruíz, R.M., Mateos-Díaz, J.C. (2018). Carbohydrate Esterases: An Overview. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 1835. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8672-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8672-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8671-2

  • Online ISBN: 978-1-4939-8672-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics