Skip to main content

Abstract

Having exhaustively studied deterministic models of reactions, the aim of the present chapter is to introduce and discuss the induced kinetic Markov process endowed with stochastic kinetics, also called the usual stochastic model of reactions. The two main differences compared to the previous models are that the state space is now discrete and the nature of determination is probabilistic. First we deal with the master equation, i.e., the evolution equation for the probability of the process being in a particular state. We formulate the analogue of “mass action type kinetics” and outline various characterizations of the underlying process which also serve as the basis for simulation methods. Then further evolution equations are discussed; in particular, the characterization of short- and long-term behavior of the induced kinetic Markov process and properties of the stationary states are covered. At the end of the chapter, we broadly discuss the relationship between the induced kinetic Markov process and the solution of the induced kinetic differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi S, Diwekar UM (2014) Characterization and stochastic modeling of uncertainties in the biodiesel production. Clean Techn Environ Policy 16(1):79–94

    Article  Google Scholar 

  • Anderson DF (2007) A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J Chem Phys 127(21):214, 107

    Article  CAS  PubMed  Google Scholar 

  • Anderson DF (2008) Incorporating postleap checks in tau-leaping. J Chem Phys 128(5):054, 103

    Article  CAS  PubMed  Google Scholar 

  • Anderson DF, Kurtz TG (2015) Stochastic analysis of biochemical systems. Mathematical Biosciences Institute and Springer, Columbus and Berlin

    Chapter  Google Scholar 

  • Anderson DF, Craciun G, Kurtz TG (2010) Product-form stationary distributions for deficiency zero chemical reaction networks. Bull Math Biol 72:1947–1970

    Article  CAS  PubMed  Google Scholar 

  • Arakelyan VB, Simonyan AL, Gevorgyan AE, Sukiasyan TS, Arakelyan AV, Grigoryan BA, Gevorgyan ES (2004) Fluctuations of the enzymatic reaction rate. Electron J Nat Sci 1(2):43–45

    Google Scholar 

  • Arakelyan VB, Simonyan AL, Kintzios S, Gevorgyan AE, Sukiasyan TS, Arakelyan AV, Gevorgyan ES (2005) Correlation fluctuations and spectral density of the enzymatic reaction rate. Electron J Nat Sci 2(5):3–7

    Google Scholar 

  • Arányi P, Tóth J (1977) A full stochastic description of the Michaelis–Menten reaction for small systems. Acta Biochim Biophys Hung 12(4):375–388

    Google Scholar 

  • Arnold L (1980) On the consistency of the mathematical models of chemical reactions. In: Haken H (ed) Dynamics of synergetic systems. Springer, Berlin, pp 107–118

    Chapter  Google Scholar 

  • Arnold L, Theodosopulu M (1980) Deterministic limit of the stochastic model of chemical reactions with diffusion. Adv Appl Probab 12(2):367–379

    Article  Google Scholar 

  • Athreya KB, Ney PE (2004) Branching processes. Courier Corporation, Chelmsford

    Google Scholar 

  • Atkins P, Paula JD (2013) Elements of physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Atlan H, Weisbuch G (1973) Resistance and inductance-like effects in chemical reactions: influence of time delays. Isr J Chem 11(2-3):479–488

    Article  CAS  Google Scholar 

  • Barabás B, Tóth J, Pályi G (2010) Stochastic aspects of asymmetric autocatalysis and absolute asymmetric synthesis. J Math Chem 48(2):457–489

    Article  CAS  Google Scholar 

  • Bartholomay AF (1958) Stochastic models for chemical reactions: I. Theory of the unimolecular reaction process. Bull Math Biol 20(3):175–190

    CAS  Google Scholar 

  • Bartis JT, Widom B (1974) Stochastic models of the interconversion of three or more chemical species. J Chem Phys 60(9):3474–3482

    Article  CAS  Google Scholar 

  • Becker N (1973a) Carrier-borne epidemics in a community consisting of different groups. J Appl Prob 10(3):491–501

    Article  Google Scholar 

  • Becker NG (1970) A stochastic model for two interacting populations. J Appl Prob 7(3):544–564

    Article  Google Scholar 

  • Becker NG (1973b) Interactions between species: some comparisons between deterministic and stochastic models. Rocky Mountain J Math 3(1):53–68

    Article  Google Scholar 

  • Bibbona E, Sirovich R (2017) Strong approximation of density dependent markov chains on bounded domains. arXiv preprint arXiv:170407481

    Google Scholar 

  • Cao Y, Petzold L (2005) Trapezoidal τ-leaping formula for the stochastic simulation of biochemical systems. Proceedings of foundations of systems biology in engineering, pp 149–152

    Google Scholar 

  • Cao Y, Gillespie DT, Petzold L (2005) Avoiding negative populations in explicit Poisson τ-leaping. J Chem Phys 123(5):054, 104, 8

    Google Scholar 

  • Cao Y, Gillespie DT, Petzold LR (2006) Efficient step size selection for the τ-leaping simulation method. J Chem Phys 124(4):044, 109, 11 pp

    Google Scholar 

  • Cappelletti D, Wiuf C (2016) Product-form Poisson-like distributions and complex balanced reaction systems. SIAM J Appl Math 76(1):411–432

    Article  Google Scholar 

  • Chatterjee A, Vlachos DG, Katsoulakis MA (2005) Binomial distribution based τ-leap accelerated stochastic simulation. J Chem Phys 122(2):024, 112

    Article  CAS  PubMed  Google Scholar 

  • Chibbaro S, Minier JP (2014) Stochastic methods in fluid mechanics. Springer, Wien

    Book  Google Scholar 

  • CombustionResearch (2011) Chemical-kinetic mechanisms for combustion applications. http://combustion.ucsd.edu, San Diego Mechanism web page, version 2011-11-22

  • Dambrine S, Moreau M (1981) On the stationary distribution of a chemical process without detailed balance. J Stat Phys 26(1):137–148

    Article  Google Scholar 

  • Darvey IG, Staff PJ (2004) Stochastic approach to first-order chemical reaction kinetics. J Chem Phys 44(3):990–997

    Article  Google Scholar 

  • Edman L, Rigler R (2000) Memory landscapes of single-enzyme molecules. Proc Natl Acad Sci USA 97(15):8266–8271

    Article  CAS  PubMed  Google Scholar 

  • English BP, Min W, van Oijen AM, Lee KT, Luo G, Sun H, Cherayil BJ, Kou SC, Xie XS (2006) Ever-fluctuating single enzyme molecules: Michaelis–Menten equation revisited. Nat Chem Biol 2:87–94

    Article  CAS  PubMed  Google Scholar 

  • Érdi P, Lente G (2016) Stochastic chemical kinetics. Theory and (mostly) systems biological applications. Springer series in synergetics. Springer, New York

    Google Scholar 

  • Érdi P, Ropolyi L (1979) Investigation of transmitter-receptor interactions by analyzing postsynaptic membrane noise using stochastic kinetics. Biol Cybern 32(1):41–45

    Article  PubMed  Google Scholar 

  • Érdi P, Tóth J (1976, in Hungarian) Stochastic reaction kinetics “nonequilibrium thermodynamics” of the state space? React Kinet Catal Lett 4(1):81–85

    Article  Google Scholar 

  • Érdi P, Tóth J (1989) Mathematical models of chemical reactions. Theory and applications of deterministic and stochastic models. Princeton University Press, Princeton

    Google Scholar 

  • Érdi P, Sipos T, Tóth J (1973) Stochastic simulation of complex chemical reactions by computer. Magy Kém Foly 79(3):97–108

    Google Scholar 

  • Ethier SN, Kurtz TG (2009) Markov processes: characterization and convergence. Wiley, Hoboken

    Google Scholar 

  • Feller W (2008) An introduction to probability theory and its applications, vol 2. Wiley, Hoboken

    Google Scholar 

  • Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463

    Article  CAS  PubMed  Google Scholar 

  • Gadgil C (2008) Stochastic modeling of biological reactions. J Indian Inst Sci 88(1):45–55

    CAS  Google Scholar 

  • Gadgil C, Lee CH, Othmer HG (2005) A stochastic analysis of first-order reaction networks. Bull Math Biol 67(5):901–946

    Article  CAS  PubMed  Google Scholar 

  • Gans PJ (1960) Open first-order stochastic processes. J Chem Phys 33(3):691–694

    Article  CAS  Google Scholar 

  • Gardiner CW (2010) Stochastic methods: a handbook for the natural and social sciences, 4th edn. Springer series in synergetics. Springer, Berlin

    Google Scholar 

  • Gardiner CW, Chaturvedi S (1977) The Poisson representation. I. A new technique for chemical master equations. J Stat Phys 17(6):429–468

    Google Scholar 

  • Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104(9):1876–1889

    Article  CAS  Google Scholar 

  • Gikhman II, Skorokhod AV (2004a) The theory of stochastic processes I. Springer, Berlin

    Book  Google Scholar 

  • Gikhman II, Skorokhod AV (2004b) The theory of stochastic processes II. Springer, Berlin

    Book  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  CAS  Google Scholar 

  • Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115(4):1716–1733

    Article  CAS  Google Scholar 

  • Gillespie CS (2009) Moment-closure approximations for mass-action models. IET Syst Biol 3(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DT, Petzold LR (2003) Improved leap-size selection for accelerated stochastic simulation. J Chem Phys 119(16):8229–8234

    Article  CAS  Google Scholar 

  • Goss PJE, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology using stochastic Petri nets. Proc Natl Acad Sci USA 95:6750–6755

    Article  CAS  PubMed  Google Scholar 

  • Grima R, Walter NG, Schnell S (2014) Single-molecule enzymology à la Michaelis–Menten. FEBS J 281(2):518–530

    Article  CAS  PubMed  Google Scholar 

  • Hárs V (1976) A sztochasztikus reakciókinetika néhány kérdéséről (Some problems of stochastic reaction kinetics). Msc, Eötvös Loránd University, Budapest

    Google Scholar 

  • Hong Z, Davidson DF, Hanson RK (2011) An improved H2O2 mechanism based on recent shock tube/laser absorption measurements. Combust Flame 158(4):633–644. https://doi.org/10.1016/j.combustflame.2010.10.002

    Article  CAS  Google Scholar 

  • Iosifescu M, Tăutu P (1973) Stochastic processes and applications in biology and medicine. II. Models. Editura Academiei, New York

    Google Scholar 

  • Jahnke T, Huisinga W (2007) Solving the chemical master equation for monomolecular reaction systems analytically. J Math Biol 54(1):1–26

    Article  PubMed  Google Scholar 

  • Joshi B (2015) A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discret Contin Dyn Syst Ser B 20(4):1077–1105

    Article  Google Scholar 

  • Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC (2014) The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20:103–111

    Article  CAS  PubMed  Google Scholar 

  • Kelly FP (1979) Reversibility and stochastic networks. Wiley, New York

    Google Scholar 

  • Kingman JFC (1969) Markov population processes. J Appl Prob 6(1):1–18

    Article  Google Scholar 

  • Kolmogoroff A (1935) Zur Theorie der Markoffschen Ketten. Math Ann 112:155–160

    Article  Google Scholar 

  • Krieger IM, Gans PJ (1960) First-order stochastic processes. J Chem Phys 32(1):247–250

    Article  CAS  Google Scholar 

  • Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Prob 7(1):49–58

    Article  Google Scholar 

  • Kurtz TG (1972) The relationship between stochastic and deterministic models for chemical reactions. J Chem Phys 57(7):2976–2978

    Article  CAS  Google Scholar 

  • Kurtz TG (1976) Limit theorems and diffusion approximations for density dependent Markov chains. In: Stochastic systems: modeling, identification and optimization, I. Springer, Berlin, pp 67–78

    Chapter  Google Scholar 

  • Kurtz TG (1978) Strong approximation theorems for density dependent Markov chains. Stoch Process Appl 6(3):223–240

    Article  Google Scholar 

  • Lai JYW, Elvati P, Violi A (2014) Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion. Phys Chem Chem Phys 16:7969–7979

    Article  CAS  PubMed  Google Scholar 

  • Lánský P, Rospars JP (1995) Ornstein–Uhlenbeck model neuron revisited. Biol Cybern 72(5):397–406

    Article  Google Scholar 

  • Lee NK, Koh HR, Han KY, Lee J, Kim SK (2010) Single-molecule, real-time measurement of enzyme kinetics by alternating-laser excitation fluorescence resonance energy transfer. Chem Commun 46:4683–4685

    Article  CAS  Google Scholar 

  • Lente G (2004) Homogeneous chiral autocatalysis: a simple, purely stochastic kinetic model. J Phys Chem A 108:9475–9478

    Article  CAS  Google Scholar 

  • Lente G (2005) Stochastic kinetic models of chiral autocatalysis: a general tool for the quantitative interpretation of total asymmetric synthesis. J Phys Chem A 109(48):11058–11063

    Article  CAS  PubMed  Google Scholar 

  • Lente G (2010) The role of stochastic models in interpreting the origins of biological chirality. Symmetry 2(2):767–798

    Article  CAS  Google Scholar 

  • Leontovich MA (1935) Fundamental equations of the kinetic theory of gases from the point of view of stochastic processes. Zhur Exper Teoret Fiz 5:211–231

    CAS  Google Scholar 

  • Li G, Rabitz H (2014) Analysis of gene network robustness based on saturated fixed point attractors. EURASIP J Bioinform Syst Biol 2014(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liggett TM (2010) Continuous time Markov processes: an introduction, vol 113. American Mathematical Society, Providence.

    Google Scholar 

  • Lipták G, Hangos KM, Pituk M, Szederkényi G (2017) Semistability of complex balanced kinetic systems with arbitrary time delays. arXiv preprint arXiv:170405930

    Google Scholar 

  • Matis JH, Hartley HO (1971) Stochastic compartmental analysis: model and least squares estimation from time series data. Biometrics, pp 77–102

    Google Scholar 

  • McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94(3):814–819

    Article  CAS  PubMed  Google Scholar 

  • Mode CJ (1971) Multitype branching processes: theory and applications, vol 34. American Elsevier, New York.

    Google Scholar 

  • Mozgunov P, Beccuti M, Horvath A, Jaki T, Sirovich R, Bibbona E (2017) A review of the deterministic and diffusion approximations for stochastic chemical reaction networks. arXiv preprint arXiv:171102567

    Google Scholar 

  • Munsky B, Khammash M (2006) The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys 124(4):044, 104

    Article  CAS  PubMed  Google Scholar 

  • Nagypál I, Epstein IR (1986) Fluctuations and stirring rate effects in the chlorite-thiosulphate reaction. J Phys Chem 90:6285–6292

    Article  Google Scholar 

  • Nagypál I, Epstein IR (1988) Stochastic behaviour and stirring rate effects in the chlorite-iodide reaction. J Chem Phys 89:6925–6928

    Article  Google Scholar 

  • Norris JR (1998) Markov chains. Cambridge University Press, Cambridge

    Google Scholar 

  • Øksendal B (2003) Stochastic differential equations, 5th edn. Springer, Berlin

    Book  Google Scholar 

  • Paulevé L, Craciun G, Koeppl H (2014) Dynamical properties of discrete reaction networks. J Math Biol 69(1):55–72

    Article  PubMed  Google Scholar 

  • Pokora O, Lánský P (2008) Statistical approach in search for optimal signal in simple olfactory neuronal models. Math Biosci 214(1–2):100–108

    Article  PubMed  Google Scholar 

  • Qian H, Elson EL (2002) Single-molecule enzymology: stochastic Michaelis–Menten kinetics. Biophys Chem 101:565–576

    Article  PubMed  Google Scholar 

  • Rathinam M, Petzold LR, Cao Y, Gillespie DT (2003) Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J Phys Chem A 119(24):12,784, 11 pp

    Article  CAS  Google Scholar 

  • Rathinam M, Petzold LR, Cao Y, Gillespie DT (2005) Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Model Simul 4(3):867–895

    Article  Google Scholar 

  • Reddy VTN (1975) On the existence of the steady state in the stochastic Volterra–Lotka model. J Stat Phys 13(1):61–64

    Article  Google Scholar 

  • Rényi A (1954, in Hungarian) Treating chemical reactions using the theory of stochastic processes. Magyar Tudományos Akadémia Alkalmazott Matematikai Intézetének Közleményei 2:83–101

    Google Scholar 

  • Robertson HH (1966) In: Walsh JE (ed) The solution of a set of reaction rate equations, Thompson Book, Toronto, pp 178–182

    Google Scholar 

  • Sakmann B, Neher E (eds) (1995) Single-channel recording, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Samad HE, Khammash M, Petzold L, Gillespie D (2005) Stochastic modeling of gene regulatory networks. Int J Robust Nonlinear Control 15:691–711

    Article  Google Scholar 

  • Siegert AJF (1949) On the approach to statistical equilibrium. Phys Rev 76(11):1708

    Article  Google Scholar 

  • Singer K (1953) Application of the theory of stochastic processes to the study of irreproducible chemical reactions and nucleation processes. J R Stat Soc Ser B 15(1):92–106

    Google Scholar 

  • Sipos T, Tóth J, Érdi P (1974a) Stochastic simulation of complex chemical reactions by digital computer, I. The model. React Kinet Catal Lett 1(1):113–117

    Article  CAS  Google Scholar 

  • Sipos T, Tóth J, Érdi P (1974b) Stochastic simulation of complex chemical reactions by digital computer, II. Applications. React Kinet Catal Lett 1(2):209–213

    Article  CAS  Google Scholar 

  • Smith G, Golden D, Frenklach M, Moriary N, Eiteneer B, Goldenberg M, Bowman C, Hanson R, Song S, Gardiner W, Lissianski V, Qin Z (2000) Gri-mech 3.0. http://www.me.berkeley.edu/gri_mech

  • Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768

    Article  CAS  Google Scholar 

  • Šolc M (2002) Stochastic model of the n-stage reversible first-order reaction: relation between the time of first passage to the most probable microstate and the mean equilibrium fluctuations lifetime. Z Phys Chem 216(7):869–893

    Article  Google Scholar 

  • Stoner CD (1993) Quantitative determination of the steady state kinetics of multi-enzyme reactions using the algebraic rate equations for the component single enzyme reactions. Biochem J 291(2):585–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth J (1981, in Hungarian) A formális reakciókinetika globális determinisztikus és sztochasztikus modelljéről (On the global deterministic and stochastic models of formal reaction kinetics with applications). MTA SZTAKI Tanulmányok 129:1–166

    Google Scholar 

  • Tóth J (1981) Poissonian stationary distribution in a class of detailed balanced reactions. React Kinet Catal Lett 18(1–2):169–173

    Google Scholar 

  • Tóth J (1988a) Contribution to the general treatment of random processes used in chemical reaction kinetics. In: Transactions of the Tenth Prague Conference on information theory, statistical decision functions, random processes, held at Prague, from July 7 to 11, 1986, Academia (Publ. House of the Czechosl. Acad. Sci.), Prague, vol 2, pp 373–379

    Google Scholar 

  • Tóth J (1988b) Structure of the state space in stochastic kinetics. In: Grossmann V, Mogyoródi J, Vincze I, Wertz W (eds) Probability theory and mathematical statistics with applications, Springer, pp 361–369

    Google Scholar 

  • Tóth J, Érdi P (1992) A sztochasztikus kinetikai modellek nélkülözhetetlensége (The indispensability of stochastic kinetical models). In: Bazsa G (ed) Nemlineáris dinamika és egzotikus kinetikai jelenségek kémiai rendszerekben (Nonlinear dynamics and exotic kinetic phenomena in chemical systems), Jegyzet, Pro Renovanda Cultura Hungariae–KLTE Fizikai Kémiai Tanszék, Debrecen–Budapest–Gödöllő, chap 3, pp 117–143

    Google Scholar 

  • Tóth J, Rospars JP (2005) Dynamic modelling of biochemical reactions with applications to signal transduction: principles and tools using Mathematica. Biosystems 79:33–52

    Article  CAS  PubMed  Google Scholar 

  • Tóth J, Török TL (1980) Poissonian stationary distribution: a degenerate case of stochastic kinetics. React Kinet Catal Lett 13(2):167–171

    Article  Google Scholar 

  • Tóth J, Érdi P, Török TL (1983, in Hungarian) Significance of the Poisson distribution in the stochastic model of complex chemical reactions (A Poisson-eloszlás jelentősége összetett kémiai reakciók sztochasztikus modelljében). Alkalmazott Matematikai Lapok 9(1–2):175–196

    Google Scholar 

  • Turányi T (1990) Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem 5(3):203–248

    Article  Google Scholar 

  • Turányi T, Tomlin AS (2014) Analysis of kinetic reaction mechanisms. Springer, Berlin

    Book  Google Scholar 

  • Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modelling in vivo reactions. Comput Biol Chem 28(3):165–178

    Article  CAS  PubMed  Google Scholar 

  • Urzay J, Kseib N, Davidson DF, Iaccarino G, Hanson RK (2014) Uncertainty-quantification analysis of the effects of residual impurities on hydrogen–oxygen ignition in shock tubes. Combust Flame 161(1):1–15

    Article  CAS  Google Scholar 

  • Van Kampen NG (2006) Stochastic processes in physics and chemistry, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Vellela M, Qian H (2007) A quasistationary analysis of a stochastic chemical reaction: Keizer’s paradox. Bull Math Biol 69(5):1727–1746

    Article  PubMed  Google Scholar 

  • Vellela M, Qian H (2009) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J R Soc Interface 6:925–940

    Article  CAS  PubMed  Google Scholar 

  • Velonia K, Flomenbom O, Loos D, Masuo S, Cotlet M, Engelborghs Y, Hofkens J, Rowan AE, Klafter J, Nolte RJM, de Schryver FC (2005) Single-enzyme kinetics of CALB catalyzed hydrolysis. Angew Chem Int Ed 44(4):560–564

    Article  CAS  Google Scholar 

  • Wadhwa RR, Zalányi L, Szente J, Négyessy L, Érdi P (2017) Stochastic kinetics of the circular gene hypothesis: feedback effects and protein fluctuations. Math Comput Simul 133:326–336

    Article  Google Scholar 

  • Weber J, Celardin F (1976) A general computer program for the simulation of reaction kinetics by the Monte Carlo technique. Chimia 30(4):236–237

    CAS  Google Scholar 

  • Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    Article  CAS  PubMed  Google Scholar 

  • Whittle P (1975) Reversibility and acyclicity. In: Perspectives in probability and statistics. Applied probability trust

    Google Scholar 

  • Whittle P (1986) Systems in stochastic equilibrium. Wiley, Hoboken

    Google Scholar 

  • Yan CCS, Hsu CP (2013) The fluctuation-dissipation theorem for stochastic kinetics—implications on genetic regulations. J Chem Phys 139(22):224, 109

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hou Z, Xin H (2005) Effects of internal noise for calcium signaling in a coupled cell system. Phys Chem Chem Phys 7(10):2225–2228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tóth, J., Nagy, A.L., Papp, D. (2018). Stochastic Models. In: Reaction Kinetics: Exercises, Programs and Theorems. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8643-9_10

Download citation

Publish with us

Policies and ethics