Skip to main content

Protein-Ligand Docking in Drug Design: Performance Assessment and Binding-Pose Selection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

Main goal in drug discovery is the identification of drug-like compounds capable to modulate specific biological targets. Thus, the prediction of reliable binding poses of candidate ligands, through molecular docking simulations, represents a key step to be pursued in structure-based drug design (SBDD). Since the increasing number of resolved three-dimensional ligand-protein structures, together with the expansion of computational power and software development, the comprehensive and systematic use of experimental data can be proficiently employed to validate the docking performance. This allows to select and refine the protocol to adopt when predicting the binding pose of trial compounds in a target. Given the availability of multiple docking software, a comparative docking assessment in an early research stage represents a must-use step to minimize fails in molecular modeling. This chapter describes how to perform a docking assessment, using freely available tools, in a semiautomated fashion.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Persch E, Dumele O, Diederich F (2015) Molecular recognition in chemical and biological systems. Angew Chem Int Ed Eng 54(11):3290–3327. https://doi.org/10.1002/anie.201408487

    Article  CAS  Google Scholar 

  2. Yu W, MacKerell AD Jr (2017) Computer-aided drug design methods. Methods Mol Biol 1520:85–106. https://doi.org/10.1007/978-1-4939-6634-9_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang YT, Marshall GR (2011) Virtual screening for lead discovery. Methods Mol Biol 716:1–22. https://doi.org/10.1007/978-1-61779-012-6_1

    Article  CAS  PubMed  Google Scholar 

  4. Ballante F, Ragno R (2012) 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications. J Chem Inf Model 52(6):1674–1685. https://doi.org/10.1021/ci300123x

    Article  CAS  PubMed  Google Scholar 

  5. Ballante F, Reddy DR, Zhou NJ et al (2017) Structural insights of SmKDAC8 inhibitors: targeting schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy. Bioorg Med Chem 25(7):2105–2132. https://doi.org/10.1016/j.bmc.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  6. Kubinyi H (1993) 3D QSAR in drug design. Volume 1: theory methods and applications. Three-dimensional quantitative structure activity relationships, Vol. 1. Springer, Berlin

    Google Scholar 

  7. Oprea TI, Waller CL (1997) Theoretical and practical aspects of three-dimensional quantitative structure-activity relationships. In: Reviews in computational chemistry. Wiley, Hoboken, NJ, pp 127–182. https://doi.org/10.1002/9780470125885.ch3

    Book  Google Scholar 

  8. Bursulaya BD, Totrov M, Abagyan R et al (2003) Comparative study of several algorithms for flexible ligand docking. J Comp Aided Molec Design 17(11):755–763. https://doi.org/10.1023/B:Jcam.0000017496.76572.6f

    Article  CAS  Google Scholar 

  9. Stahl M (2000) Modifications of the scoring function in FlexX for virtual screening applications. Perspect Drug Discov Design 20(1):83–98. https://doi.org/10.1023/A:1008724921888

    Article  CAS  Google Scholar 

  10. Wang R, Lu Y, Fang X et al (2004) An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. J Chem Inf Comput Sci 44(6):2114–2125. https://doi.org/10.1021/ci049733j

    Article  CAS  PubMed  Google Scholar 

  11. Reddy DR, Ballante F, Zhou NJ et al (2017) Design and synthesis of benzodiazepine analogs as isoform-selective human lysine deacetylase inhibitors. Eur J Med Chem 127:531–553. https://doi.org/10.1016/j.ejmech.2016.12.032

    Article  CAS  PubMed  Google Scholar 

  12. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  13. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maignan S, Guilloteau JP, Pouzieux S et al (2000) Crystal structures of human factor Xa complexed with potent inhibitors. J Med Chem 43(17):3226–3232

    Article  CAS  PubMed  Google Scholar 

  16. Kamata K, Kawamoto H, Honma T et al (1998) Structural basis for chemical inhibition of human blood coagulation factor Xa. Proc Natl Acad Sci U S A 95(12):6630–6635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scharer K, Morgenthaler M, Paulini R et al (2005) Quantification of cation-pi interactions in protein-ligand complexes: crystal-structure analysis of Factor Xa bound to a quaternary ammonium ion ligand. Angew Chem Int Ed Eng 44(28):4400–4404. https://doi.org/10.1002/anie.200500883

    Article  CAS  Google Scholar 

  18. Watson NS, Brown D, Campbell M et al (2006) Design and synthesis of orally active pyrrolidin-2-one-based factor Xa inhibitors. Bioorg Med Chem Lett 16(14):3784–3788. https://doi.org/10.1016/j.bmcl.2006.04.053

    Article  CAS  PubMed  Google Scholar 

  19. Pinto DJ, Orwat MJ, Quan ML et al (2006) 1-[3-Aminobenzisoxazol-5’-yl]-3-trifluoromethyl-6-[2’-(3-(R)-hydroxy-N-pyrrolidin yl)methyl-[1,1’]-biphen-4-yl]-1,4,5,6-tetrahydropyrazolo-[3,4-c]-pyridin-7-one (BMS-740808) a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. Bioorg Med Chem Lett 16(15):4141–4147. https://doi.org/10.1016/j.bmcl.2006.02.069

    Article  CAS  PubMed  Google Scholar 

  20. Ballante F, Marshall GR (2016) An automated strategy for binding-pose selection and docking assessment in structure-based drug design. J Chem Inf Model 56(1):54–72. https://doi.org/10.1021/acs.jcim.5b00603

    Article  CAS  PubMed  Google Scholar 

  21. Allen WJ, Balius TE, Mukherjee S et al (2015) DOCK 6: Impact of new features and current docking performance. J Comput Chem 36(15):1132–1156. https://doi.org/10.1002/jcc.23905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. Aust J Chem 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  23. The Open Babel Package. 2.4.1 http://openbabel.org. Accessed June 2017. edn.

  24. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

F.B. thanks Prof. Garland R. Marshall (Washington University School of Medicine in St. Louis, MO) for supporting and funding the design and development of the Clusterizer-DockAccessor protocol; Dr. Chris M. W. Ho (Drug Design Methodologies, LLC, St. Louis, MO) and Ms. Mariama Jaiteh (Uppsala University, Uppsala, Sweden) for providing insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Ballante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ballante, F. (2018). Protein-Ligand Docking in Drug Design: Performance Assessment and Binding-Pose Selection. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics