Skip to main content

Correlative Atomic Force and Single-Molecule Fluorescence Microscopy of Nucleoprotein Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Correlative imaging by fluorescence and atomic force microscopy provides a versatile tool to extract orthogonal information on structurally heterogeneous biomolecular assemblies. In this chapter, we describe an integrated setup for correlative fluorescence and force microscopy. We present factors influencing data quality, as well as step-by-step protocols for sample preparation, data acquisition, and data processing that yield nanoscale topographic resolution, high image registration accuracy, and single-fluorophore sensitivity. We demonstrate the capabilities of the approach through simultaneous characterization of mesoscale geometry and composition in a multipart nucleoprotein complex.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Engelkamp H, Hatzakis NS, Hofkens J, De Schryver FC, Nolte RJ, Rowan AE (2006) Do enzymes sleep and work? Chem Commun 9:935–940

    Article  CAS  Google Scholar 

  2. Solomatin SV, Greenfeld M, Herschlag D (2011) Implications of molecular heterogeneity for the cooperativity of biological macromolecules. Nat Struct Mol Biol 18:732–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Oijen AM, Blainey PC, Crampton DJ, Richardson CC, Ellenberger T, Xie XS (2003) Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301:1235–1238

    Article  CAS  PubMed  Google Scholar 

  4. Xiao J, Dufrene YF (2016) Optical and force nanoscopy in microbiology. Nat Microbiol 1:1–13

    Google Scholar 

  5. Binnig G, Quate CF, Gerber C (1986) Atomic Force Microscope. Phys Rev Lett 56:930–933

    Article  CAS  PubMed  Google Scholar 

  6. Lyubchenko YL (2011) Preparation of DNA and nucleoprotein samples for AFM imaging. Micron 42:196–206

    Article  CAS  PubMed  Google Scholar 

  7. Sahl SJ, Moerner WE (2013) Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol 23:778–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abbe E (1881) VII.—On the estimation of aperture in the microscope. J R Microsc Soc 1:388–423

    Article  Google Scholar 

  9. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    Article  CAS  PubMed  Google Scholar 

  10. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. J Biophys 82:2775–2783

    Article  CAS  Google Scholar 

  11. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Meth 7:377–381

    Article  CAS  Google Scholar 

  12. Frederickx W, Rocha S, Fujita Y, Kennes K, De Keersmaecker H, De Feyter S, Uji-i H, Vanderlinden W (2018) Orthogonal probing of single molecule heterogeneity by correlative fluorescence and force microscopy. ACS Nano 12(1):168–177

    Article  CAS  PubMed  Google Scholar 

  13. Churchman LS, Okten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci 102:1419–1423

    Article  CAS  PubMed  Google Scholar 

  14. Cohen EA, Ober RJ (2013) Analysis of point based image registration errors with applications in single molecule microscopy. IEEE Trans Signal Process 61:6291–6306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen EAK, Kim D, Ober RJ (2015) Cramer-Rao lower bound for point based image registration with heteroscedastic error model for application in single molecule microscopy. IEEE Trans Med Imaging 34:2632–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Ann Rev Biophys Biomol Struct 25:395–429

    Article  CAS  Google Scholar 

  17. El-Bahrawi MS, Nagib NN, Khodier SA, Sidki HM (1998) Birefringence of muscovite mica. Opt Laser Technol 30:411–415

    Article  CAS  Google Scholar 

  18. Rocha S, Hutchison JA, Peneva K, Herrmann A, Mullen K, Skjot M, Jorgensen CI, Svendsen A, De Schryver FC, Hofkens J, Uji-i H (2009) Linking phospholipase mobility to activity by single-molecule wide-field microscopy. ChemPhysChem 10:151–161

    Article  CAS  PubMed  Google Scholar 

  19. Das SK, Darshi M, Cheley S, Wallace MI, Bayley H (2007) Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits. Chembiochem 8:994–999

    Article  CAS  PubMed  Google Scholar 

  20. Kerssemakers JWJ, Laura Munteanu E, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712

    Article  CAS  PubMed  Google Scholar 

  21. Deschout H, Cella Zanacchi F, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess ST, Braeckmans K (2014) Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Meth 11:253–266

    Article  CAS  Google Scholar 

  22. Schulze C, Jeltsch A, Franke I, Urbanke C, Pingoud A (1998) Crosslinking the EcoRV restriction endonuclease across the DNA-binding site reveals transient intermediates and conformational changes of the enzyme during DNA binding and catalytic turnover. EMBO J 17:6757–6766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonnet I, Biebricher A, Porte PL, Loverdo C, Benichou O, Voituriez R, Escude C, Wende W, Pingoud A, Desbiolles P (2008) Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res 36:4118–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wenz C, Jeltsch A, Pingoud A (1996) Probing the indirect readout of the restriction enzyme EcoRV. Mutational analysis of contacts to the DNA backbone. J Biol Chem 271:5565–5573

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez H, Kertokalio A, van Rossum-Fikkert S, Kanaar R, Wyman C (2013) Combined optical and topographic imaging reveals different arrangements of human RAD54 with presynaptic and postsynaptic RAD51–DNA filaments. Proc Natl Acad Sci 110:11385–11390

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Wolfgang Wende for kindly providing the EcoRV (C21S/K58C) expression plasmid. We acknowledge funding from KU Leuven through the IDO program for financial support; WF, SR, and WV like to thank Fonds Wetenschappelijk Onderzoek (FWO) for personal fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Vanderlinden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Keersmaecker, H. et al. (2018). Correlative Atomic Force and Single-Molecule Fluorescence Microscopy of Nucleoprotein Complexes. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics