Skip to main content

Unraveling the Functions of Endogenous Receptor Oligomers in the Brain Using Interfering Peptide: The Example of D1R/NMDAR Heteromers

  • Protocol
  • First Online:
  • 644 Accesses

Part of the book series: Neuromethods ((NM,volume 140))

Abstract

Decoding signaling pathways in different brain structures is crucial to develop pharmacological strategies for neurological diseases. In this perspective, the targeting of receptors by selective ligands is one of the classical therapeutic strategies. Nonetheless, this approach often results in a decrease of efficiency over time and deleterious side effects because physiological functions can be affected. An emerging concept has been to target mechanisms that fine-tune receptor signaling, such as heteromerization, the process by which physical receptor–receptor interaction at the membrane allows the reciprocal modulation of receptors’ signaling. Because of the central role of the synergistic transmission mediated by dopamine (DA) and glutamate (Glu) in brain physiology and pathophysiology, heteromerization between DA and Glu receptors has received a lot of attention. However, the study of endogenous heteromers has been challenging because of the lack of appropriate tools. Over the last years, progress has been made in the development of techniques to study their expression in the brain, regulation and function. In this chapter, we provide a methodological framework for the design and use of interfering peptides to study endogenous receptor oligomers through the example of the dopamine type 1 receptor (D1R) and the GluN1 subunit of NMDA receptor heteromers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bastide MF, Meissner WG, Picconi B et al (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168

    Article  CAS  PubMed  Google Scholar 

  2. Roze E, Cahill E, Martin E et al (2011) Huntington’s disease and striatal signaling. Front Neuroanat 5:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laurelle M (2014) Schizophrenia: from dopaminergic to glutamatergic intervention. Curr Opin Pharmacol 14:97–102

    Article  CAS  Google Scholar 

  4. Pauls DL, Abramovitch A, Rauch SL et al (2014) Obsessive-compulsive disorder: an integrative genetic and neurological perspective. Nat Rev Neurosci 15:410–424

    Article  CAS  PubMed  Google Scholar 

  5. Cahill E, Salery M, Vanhoutte P et al (2014) Convergence of dopamine and glutamate signalling onto striatal ERK activation in response to drugs of abuse. Front Pharmacol 4:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pascoli V, Cahill E, Bellivier F et al (2014) Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation. Biol Psychiatry 76:917–926

    Article  CAS  PubMed  Google Scholar 

  7. Wang M, Wong AH, Liu F (2012) Interaction between NMDAR and dopamine receptors: a potential therapeutic target. Brain Res 1476:154–163

    Article  CAS  PubMed  Google Scholar 

  8. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W et al (2014) Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G-protein-coupled receptor field. Neuropsychopharmacology 39:131–155

    Article  CAS  PubMed  Google Scholar 

  9. Borroto-Escuela DO, Carlsson J, Ambrogini P et al (2017) Understanding the role of GPCR heteroreceptor complexes in modulating the rain networks in health and disease. Front Cell Neurosci 1:37

    Google Scholar 

  10. Lee FJS, Xue S, Pei L et al (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with dopamine 1 receptor. Cell 111:219–230

    Article  CAS  PubMed  Google Scholar 

  11. Pei L, Lee FJS, Moszczynska A et al (2004) Regulation of dopamine D1 receptor function by physical interaction with NMDAR receptors. J Neurosci 24:1149–1158

    Article  CAS  PubMed  Google Scholar 

  12. Cepeda C, Levine MS (2006) Where do you think you are going? The NMDA-D1 receptor trap. Sci STKE 2006:pe20

    PubMed  Google Scholar 

  13. Scott L, Zeleniin S, Malmersjo S et al (2006) Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci U S A 103:762–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu XY, Chu XP, Mao LM et al (2006) Modulation of D2R-NR2B interactions in responses to cocaine. Neuron 52:897–909

    Article  CAS  PubMed  Google Scholar 

  15. Nai Q, Li S, Wang SH et al (2010) Uncoupling D1-N-Methyl-D-Aspartate (NMDA) receptor complex promotes NMDA-dependent long-term potentiation and working memory. Biol Psychiatry 67:246–254

    Article  CAS  PubMed  Google Scholar 

  16. Pascoli V, Besnard A, Hervé D et al (2011) Cyclic adenosine monophosphate-independent tyrosine kinase phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biol Psychiatry 69:218–227

    Article  CAS  PubMed  Google Scholar 

  17. Ladepeche L, Dupuis JP, Bouchet D et al (2013) Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci U S A 110:18005–18010

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cahill E, Pascoli V, Trifieff P et al (2014) D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses. Mol Psychiatry 19:1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fiorentini C, Gardoni F, Spano PF et al (2003) Regulation of dopamine 1 receptor trafficking and desensitization by oligomerization with glutamate N-Methyl-D-aspartate receptors. J BiolChem 278:20196–20202

    CAS  Google Scholar 

  20. Fiorentini C, Busi C, Spano PF et al (2008) Role of receptor heterodimers in the development of L-dopa-induced dyskinesia in the 6-hydroxydopamine rat model of Parkinson’s disease. Parkinsonism Relat Disord 14:S159–S164

    Article  PubMed  Google Scholar 

  21. Zhang J, Xu TX, Hallett PJ et al (2009) PSD-95 uncouples dopamine-glutamate interaction in the DA/PSD-95/NMDA receptor complex. J Neurosci 29:2948–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trifilieff P, Rives ML, Urizar E et al (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2 receptor complexes in the striatum. BioTechniques 50:111–118

    Google Scholar 

  23. Borroto-Escuela DO et al (2018) Receptor-receptor interactions in the central nervous system. Chapter 19 Neuromethods. Springer, New York

    Google Scholar 

  24. Biezonski DK, Trifilieff P, Meszaros J et al (2015) Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of neonatal mouse. J Comp Neurol 523:1175–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bontempi L, Savoia P, Bono F et al (2017) Dopamine D3 and acetylcholine nicotinic receptor heteromerization in midbrain dopamine neurons: relevance for neuroplasticity. Eur Neuropsychopharmacol 27:313–324

    Article  CAS  PubMed  Google Scholar 

  26. He Y, Li Y, Chen M et al (2016) Habit formation after random interval training is associated with increased adenosine A2A receptor and dopamine D2 receptor heteromers in the striatum. Front Mol Neurosci 9:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soriano A, Ventura R, Molero A et al (2009) Adenosine receptor-antagonist/dopamine D2-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J Med Chem 52:5590–5602

    Article  CAS  PubMed  Google Scholar 

  28. Ehlers MD, Zhang S, Bernhardt JP et al (1998) Inactivation of NMDA receptors by direct interaction of calmodulin with NR1 subunit. Cell 84:745–755

    Article  Google Scholar 

  29. Woods AS, Ciruela F, Fuxe K et al (2005) Role of electrostatic interaction in receptor–receptor heteromerization. J Mol Neurol 26:125–132

    Article  CAS  Google Scholar 

  30. Garcia M, Charvin D, Caboche J (2004) Expanded Huntingtin activates the c-jun N terminal kinase/c-Jun pathway prior to aggregate formation in striatal neurons in culture. Neuroscience 127:859–870

    Article  CAS  PubMed  Google Scholar 

  31. Bellucci A, Fiorentinin C, Zalteri M et al (2014) The “in situ” proximity ligation assay to probe protein-protein interactions in intact tissues. In: Ivanov A (ed) Exocytosis and endocytosis. Methods in molecular biology (Methods and protocols), vol 1174. Humana, New York

    Google Scholar 

  32. Corvol JC, Studler JM, Schonn JS et al (2001) Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 76:1585–1588

    Article  CAS  PubMed  Google Scholar 

  33. Dupont E, Prochiantz A, Joliot A (2015) Penetratin story: an overview. Methods Mol Biol 1324:29–37

    Article  PubMed  Google Scholar 

  34. Ciruela F, Burgueño J, Casadó V et al (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 76:5354–5363

    Article  CAS  PubMed  Google Scholar 

  35. Gentilucci L, De Marco R, Cerisole L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16:3185–3203

    Article  CAS  PubMed  Google Scholar 

  36. Lavaur J, Bernard F, Trifilieff P et al (2007) A TAT-DEF-Elk-1 peptide regulates the cytonuclear trafficking of Elk-1 and controls cytoskeleton dynamics. J Neurosci 27:14448–14458

    Article  CAS  PubMed  Google Scholar 

  37. Besnard A, Bouveyron N, Kappès V et al (2011) Alteration of molecular and behavioural responses to cocaine by selective inhibition of Elk-1 phosphorylation. J Neurosci 31:14296–14307

    Article  CAS  PubMed  Google Scholar 

  38. König B, Grätzel M (1994) Site of dopamine D1 receptor binding to Gs protein mapped with synthetic peptides. Biochem Biophys Acta 1223:261–266

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vanhoutte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andrianarivelo, A., Saint-Jour, E., Trifilieff, P., Vanhoutte, P. (2018). Unraveling the Functions of Endogenous Receptor Oligomers in the Brain Using Interfering Peptide: The Example of D1R/NMDAR Heteromers. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics