Skip to main content

Dual-Functionalized Virus–Gold Nanoparticle Clusters for Biosensing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

Metallic nanoscale 3D architectures concentrate electromagnetic energy at precise spatial locations to enable sensing and photocatalysis applications. We have developed solution-based methods to reproducibly fabricate 3D gold nanostructures useful as efficient surface-enhanced Raman spectroscopy (SERS) biosensors. Virus capsids were recruited as templates to assemble gold nanoparticles on their surfaces at well-defined locations to prepare the nanoscale 3D structures. Cowpea mosaic virus (CPMV) and its variants were selected as specific templates due to their high symmetry, scalability, and stability, which have proven useful in materials science applications. While the methods described herein were optimized for the CPMV capsids, they also provide a useful starting point for researchers who are working toward the nanoassembly of metal nanoparticles on other protein scaffolds.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Muehlig S, Cunningham A, Dintinger J, Scharf T, Burgi T, Lederer F, Rockstuhl C (2013) Self-assembled plasmonic metamaterials. Nanophotonics 2(3):211–240. https://doi.org/10.1515/nanoph-2012-0036

    Article  CAS  Google Scholar 

  2. Hedayati MK, Faupel F, Elbahri M (2014) Review of plasmonic nanocomposite metamaterial absorber. Materials 7(2):1221–1248. https://doi.org/10.3390/ma7021221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yao K, Liu YM (2014) Plasmonic metamaterials. Nanotechnol Rev 3(2):177–210. https://doi.org/10.1515/ntrev-2012-0071

    Article  CAS  Google Scholar 

  4. Kretschmer F, Muhlig S, Hoeppener S, Winter A, Hager MD, Rockstuhl C, Pertsch T, Schubert US (2014) Survey of plasmonic nanoparticles: from synthesis to application. Part Part Syst Charact 31(7):721–744. https://doi.org/10.1002/ppsc.201300309

    Article  Google Scholar 

  5. Blum AS, Soto CM, Wilson CD, Cole JD, Kim M, Gnade B, Chatterji A, Ochoa WF, Lin TW, Johnson JE, Ratna BR (2004) Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4(5):867–870. https://doi.org/10.1021/nl0497474

    Article  CAS  Google Scholar 

  6. Blum AS, Soto CM, Wilson CD, Brower TL, Pollack SK, Schull TL, Chatterji A, Lin TW, Johnson JE, Amsinck C, Franzon P, Shashidhar R, Ratna BR (2005) An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small 1(7):702–706. https://doi.org/10.1002/smll.200500021

    Article  PubMed  CAS  Google Scholar 

  7. Blum AS, Soto CM, Wilson CD, Whitley JL, Moore MH, Sapsford KE, Lin TW, Chatterji A, Johnson JE, Ratna BR (2006) Templated self-assembly of quantum dots from aqueous solution using protein scaffolds. Nanotechnology 17(20):5073–5079. https://doi.org/10.1088/0957-4484/17/20/006

    Article  CAS  Google Scholar 

  8. Blum AS, Soto CM, Wilson CD, Amsinck C, Franzon P, Ratna BR (2007) Electronic properties of molecular memory circuits on a nanoscale scaffold. IEEE Trans Nanobioscience 6(4):270–274. https://doi.org/10.1109/tnb.2007.908978

    Article  PubMed  Google Scholar 

  9. Blum AS, Soto CM, Sapsford KE, Wilson CD, Moore MH, Ratna BR (2011) Molecular electronics based nanosensors on a viral scaffold. Biosens Bioelectron 26(6):2852–2857. https://doi.org/10.1016/j.bios.2010.11.021

    Article  PubMed  CAS  Google Scholar 

  10. Zhou JC, Soto CM, Chen MS, Bruckman MA, Moore MH, Barry E, Ratna BR, Pehrsson PE, Spies BR, Confer TS (2012) Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires. J Nanobiotechnol 10:Article No. 18. https://doi.org/10.1186/1477-3155-10-18

    Article  CAS  Google Scholar 

  11. Fontana J, Dressick WJ, Phelps J, Johnson JE, Rendell RW, Sampson T, Ratna BR, Soto CM (2014) virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly. Small 10(15):3058–3063. https://doi.org/10.1002/smll.201400470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lebedev N, Griva I, Dressick WJ, Phelps J, Johnson JE, Meshcheriakova Y, Lomonossoff GP, Soto CM (2016) A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor. Biosens Bioelectron 77:306–314. https://doi.org/10.1016/j.bios.2015.09.032

    Article  PubMed  CAS  Google Scholar 

  13. Bahns JT, Guo Q, Montgomery JM, Gray SK, Jaeger HM, Chen L (2009) High-fidelity nano-hole-enhanced Raman spectroscopy. J Phys Chem C 113(26):11190–11197. https://doi.org/10.1021/jp900764a

    Article  CAS  Google Scholar 

  14. Malvadkar NA, Demirel G, Poss M, Javed A, Dressick WJ, Demirel MC (2010) Fabrication and use of electroless plated polymer surface-enhanced Raman spectroscopy substrates for viral gene detection. J Phys Chem C 114(24):10730–10738. https://doi.org/10.1021/jp101542j

    Article  CAS  Google Scholar 

  15. Mühlig S, Cialla D, Cunningham A, März A, Weber K, Bürgi T, Lederer F, Rockstuhl C (2014) Stacked and tunable large-scale plasmonic nanoparticle arrays for surface-enhanced Raman spectroscopy. J Phys Chem C 118(19):10230–10237. https://doi.org/10.1021/jp409688p

    Article  CAS  Google Scholar 

  16. Mu C, Zhang J-P, Xu D (2010) Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology 21(1):Article No. 015604. https://doi.org/10.1088/0957-4484/21/1/015604

    Article  PubMed  CAS  Google Scholar 

  17. Becker M, Stelzner T, Steinbrück A, Berger A, Liu J, Lerose D, Gösele U, Christiansen S (2009) Selectively deposited silver coatings on gold-capped silicon nanowires for surface-enhanced Raman spectroscopy. ChemPhysChem 10(8):1219–1224. https://doi.org/10.1002/cphc.200800809

    Article  PubMed  CAS  Google Scholar 

  18. Alù A, Engheta N (2009) The quest for magnetic plasmons at optical frequencies. Opt Express 17(7):5723–5730. https://doi.org/10.1364/oe.17.005723

    Article  PubMed  Google Scholar 

  19. Urban AS, Shen X, Wang Y, Large N, Wang H, Knight MW, Nordlander P, Chen H, Halas NJ (2013) Three-dimensional plasmonic nanoclusters. Nano Lett 13(9):4399–4403. https://doi.org/10.1021/nl402231z

    Article  PubMed  CAS  Google Scholar 

  20. Zhao X (2012) Bottom-up fabrication methods of optical metamaterials. J Mater Chem 22(19):9439–9449. https://doi.org/10.1039/C2JM15979A

    Article  CAS  Google Scholar 

  21. Barrow SJ, Wei X, Baldauf JS, Funston AM, Mulvaney P (2012) The surface plasmon modes of self-assembled gold nanocrystals. Nat Commun 3:Article No. 1275. https://doi.org/10.1038/ncomms2289

    Article  PubMed  CAS  Google Scholar 

  22. Zhao Y, Xu L, Liz-Marzán LM, Kuang H, Ma W, Asenjo-García A, García de Abajo FJ, Kotov NA, Wang L, Xu C (2013) Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties. J Phys Chem Lett 4(4):641–647. https://doi.org/10.1021/jz400045s

    Article  PubMed  CAS  Google Scholar 

  23. Zahr OK, Blum AS (2012) Solution phase gold nanorings on a viral protein template. Nano Lett 12(2):629–633. https://doi.org/10.1021/nl203368v

    Article  PubMed  CAS  Google Scholar 

  24. Johnson J, Lin T, Lomonossoff G (1997) Presentation of heterologous peptides on plant viruses: genetics, structure, and function. Annu Rev Phytopathol 35:67–86. https://doi.org/10.1146/annurev.phyto.35.1.67

    Article  PubMed  CAS  Google Scholar 

  25. Sainsbury F, Saxena P, Aljabali AAA, Saunders K, Evans DJ, Lomonossoff GP (2014) Genetic engineering and characterization of cowpea mosaic virus empty virus-like particles. In: Lin B, Ratna B (eds) Virus hybrids as nanomaterials, Methods mol biol, vol 1108. Humana Press, Clifton, pp 139–153. https://doi.org/10.1007/978-1-62703-751-8_11

    Chapter  Google Scholar 

  26. Aljabali AAA, Sainsbury F, Lomonossoff GP, Evans DJ (2010) Cowpea mosaic virus unmodified empty virus-like particles loaded with metal and metal oxide. Small 6(7):818–821. https://doi.org/10.1002/smll.200902135

    Article  PubMed  CAS  Google Scholar 

  27. Chatterji A, Ochoa WF, Paine M, Ratna BR, Johnson JE, Lin T (2004) New addresses on an addressable virus nanoblock: uniquely reactive lys residues on cowpea mosaic virus. Chem Biol 11:855–863. https://doi.org/10.1016/j.chembiol.2004.04.011

    Article  PubMed  CAS  Google Scholar 

  28. Steinmetz NF, Evans DJ, Lomonossoff GP (2007) Chemical introduction of reactive thiols into a viral nanoscaffold: a method that avoids virus aggregation. Chembiochem 8(10):1131–1136. https://doi.org/10.1002/cbic.200700126

    Article  PubMed  CAS  Google Scholar 

  29. Soto CM (2014) A programmable fluorescent viral nanoblock: sensing made easy in a single step. In: Lin B, Ratna B (eds) Virus hybrids as nanomaterials, Methods mol. biol, vol 1108. Humana Press, Clifton, pp 155–172. https://doi.org/10.1007/978-1-62703-751-8_12

    Chapter  Google Scholar 

  30. Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus ostwald ripening. Langmuir 27:11098–11105. https://doi.org/10.1021/la201938u

    Article  PubMed  CAS  Google Scholar 

  31. Wang Q, Lin T, Johnson JE, Finn MG (2002) Natural supramolecular building blocks: cysteine-added mutants of cowpea mosaic virus. Chem Biol 9:813–819. https://doi.org/10.1016/S1074-5521(02)00166-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Naval Research 6.1 base funds. We thank J. Phelps and J. E. Johnson for BC-CPMV samples and Y. Meshcheriakova and G. Lomonossoff for VLP samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carissa M. Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soto, C.M., Dressick, W.J. (2018). Dual-Functionalized Virus–Gold Nanoparticle Clusters for Biosensing. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics