Skip to main content

Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

CRISPR-Cas9 has been explored as a transformative genome engineering tool for many eukaryotic organisms. However, its utilization in bacteria remains limited and ineffective. This chapter, taking Clostridium beijerinckii as an example, describes the use of Streptococcus pyogenes CRISPR-Cas9 system guided by the single chimeric guide RNA (gRNA) for diverse genome-editing purposes, including chromosomal gene deletion, integration, single nucleotide modification, as well as “clean” mutant selection. The general principle is to use CRISPR-Cas9 as an efficient selection tool for the edited mutant (whose CRISPR-Cas9 target site has been disrupted through a homologous recombination event and thus can survive selection) against? the wild type background cells. This protocol is broadly applicable to other microorganisms for genome-editing purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen Y, Indurthi DC, Jones SW, Papoutsakis ET (2011) Small RNAs in the genus Clostridium. MBio 2:e00340–e00310. https://doi.org/10.1128/mBio.00340-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59:1077–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Green EM, Boynton ZL, Harris LM et al (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086. https://doi.org/10.1099/13500872-142-8-2079

    Article  CAS  PubMed  Google Scholar 

  4. Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586–3597. https://doi.org/10.1128/JB.184.13.3586-3597.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Hinai MA, Fast AG, Papoutsakis ET (2012) Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene geletions and DNA integration. Appl Environ Microbiol 78:8112–8121. https://doi.org/10.1128/AEM.02214-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heap JT, Pennington OJ, Cartman ST et al (2007) The clostron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464. https://doi.org/10.1016/j.mimet.2007.05.021

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Li X, Milne CB et al (2013) Development of a gene knockout system using mobile group II introns (targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl Environ Microbiol 79:5853–5863. https://doi.org/10.1128/AEM.00971-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190. https://doi.org/10.1038/nrg2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239. https://doi.org/10.1038/nbt.2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oh J-H, van Pijkeren J-P (2014) CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. https://doi.org/10.1093/nar/gku623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728. https://doi.org/10.1021/sb500351f

    Article  CAS  PubMed  Google Scholar 

  13. Huang H, Zheng G, Jiang W et al (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin Shanghai 47:231–243. https://doi.org/10.1093/abbs/gmv007

    Article  CAS  PubMed  Google Scholar 

  14. Tong Y, Charusanti P, Zhang L et al (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029. https://doi.org/10.1021/acssynbio.5b00038

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Y, Chen B, Duan C et al (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514. https://doi.org/10.1128/AEM.04023-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Zhang Z-T, Seo S-O et al (2015) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200:1–5. https://doi.org/10.1016/j.jbiotec.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Zhang Z-T, Seo S-O et al (2016) Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable “clean mutant” selection in Clostridium beijerinckii as an example. ACS Synth Biol 5:721–732. https://doi.org/10.1021/acssynbio.6b00060

    Article  CAS  PubMed  Google Scholar 

  18. Xu T, Li Y, Shi Z et al (2015) Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol 81:4423–4431. https://doi.org/10.1128/AEM.00873-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang S, Dong S, Wang P et al (2017) Genome editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 system. Appl Environ Microbiol 83:e00233–17. https://doi.org/10.1128/AEM.00233-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qi L, Larson M, Gilbert L et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiagen (2008) .QIAquick® spin handbook. http://sevierlab.vet.cornell.edu/resources/EN-QIAquick-Spin-Handbook.pdf. Accessed 15 Jun 2017

  23. NEB Protocol: Optimizing restriction endonuclease reactions. https://www.neb.com/protocols/2012/12/07/optimizing-restriction-endonuclease-reactions. Accessed 15 Jun 2017

  24. NEB Gibson assembly® master mix instructions manual. https://www.neb.com/~/media/Catalog/All-Products/0AA961B294E444AFBEDD5C4A904C76E6/Datacards or Manuals/ManualE2611.pdf. Accessed 15 Jun 2017

  25. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  26. Zymo Research Corp. Instruction manual quick-RNA™ miniprep. https://www.zymoresearch.com/downloads/dl/file/id/152/r1054i.pdf. Accessed 15 Jun 2017

  27. NEB ProtoScript® first strand cDNA synthesis kit instruction manual. https://www.neb.com/~/media/Catalog/All-Products/8DC78EF3331D476F9C263B572910651B/Datacards or Manuals/manualE6300.pdf. Accessed 15 Jun 2017

  28. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. NEB HiScribe™ T7 quick high yield RNA synthesis kit instructions manuals. https://www.neb.com/~/media/Catalog/All-Products/9D7209047C8E4B34ABE47B635EB600E2/Datacards or Manuals/manualE2050.pdf. Accessed 15 Jun 2017

  30. NEB Protocol: In vitro digestion of DNA with Cas9 nuclease, S. pyogenes. (M0386). https://www.neb.com/protocols/2014/05/01/in-vitro-digestion-of-dna-with-cas9-nuclease-s-pyogenes-m0386. Accessed 15 Jun 2017

  31. Heap JT, Kuehne SA, Ehsaan M et al (2010) The ClosTron: Mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80:49–55. https://doi.org/10.1016/j.mimet.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  32. Jesse TW (2003) Genetic characterization and manipulation of solvent-producing Clostridia. University of Illinois at Urbana-Champaign, Dissertation

    Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Energy (DOE) grant #2011-01219 to HPB. We thank Dr. Terry Papoutsakis for providing the pKO_mazF plasmid. We also thank Dr. Wenyan Jiang (from Dr. Luciano A. Marraffini’s group at The Rockefeller University), Dr. Esteban Toro (from Dr. Adam P. Arkin’s group at UC-Berkeley), Dr. Jason Peters (from Dr. Carol Gross’ group at UC-San Francisco), and Dr. Martin Jinek (from Dr. Jennifer Doudna’s group at UC-Berkeley) for their helpful discussions. We acknowledge www.somersault1824.com for allowing us to use their library to generate Figs. 1 and 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, ZT. et al. (2018). Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics