Skip to main content

Generation of Micronuclei and Detection of Chromosome Pulverization

  • Protocol
  • First Online:
Book cover Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

Lagging chromosomes that arise after chromosome mis-segregation during cell division can be encapsulated within small structures known as micronuclei. A link between whole-chromosome mis-segregation and chromothripsis has been demonstrated via micronuclear chromosome pulverization. Here, we describe methods to efficiently generate micronuclei and examine downstream cell fates, specifically with regard to DNA damage and chromosome pulverization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones S, Chen WD, Parmigiani G et al (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 105(11):4283–4288. https://doi.org/10.1073/pnas.0712345105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40. https://doi.org/10.1016/j.cell.2010.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152(6):1226–1236. https://doi.org/10.1016/j.cell.2013.02.023

    Article  CAS  PubMed  Google Scholar 

  4. Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18(11):1630–1638. https://doi.org/10.1038/nm.2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58. https://doi.org/10.1038/nature10802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455(1–2):81–95

    Article  CAS  PubMed  Google Scholar 

  7. Norppa H, Falck GC (2003) What do human micronuclei contain? Mutagenesis 18(3):221–233

    Article  CAS  PubMed  Google Scholar 

  8. Cimini D (2008) Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta 1786(1):32–40. https://doi.org/10.1016/j.bbcan.2008.05.003

    CAS  PubMed  Google Scholar 

  9. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282. https://doi.org/10.1038/nature08136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Terradas M, Martin M, Tusell L et al (2010) Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat Res 705(1):60–67. https://doi.org/10.1016/j.mrrev.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  11. Hoffelder DR, Luo L, Burke NA et al (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112(8):389–397. https://doi.org/10.1007/s00412-004-0284-6

    Article  PubMed  Google Scholar 

  12. Cimini D, Howell B, Maddox P et al (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153(3):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lanni JS, Jacks T (1998) Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 18(2):1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dalton WB, Nandan MO, Moore RT et al (2007) Human cancer cells commonly acquire DNA damage during mitotic arrest. Cancer Res 67(24):11487–11492. https://doi.org/10.1158/0008-5472.CAN-07-5162

    Article  CAS  PubMed  Google Scholar 

  15. Fenech M, Chang WP, Kirsch-Volders M et al (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534(1–2):65–75

    Article  CAS  PubMed  Google Scholar 

  16. Obe G, Beek B, Vaidya VG (1975) The human leukocyte test system. III. Premature chromosome condensation from chemically and x-ray induced micronuclei. Mutat Res 27(1):89–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen C. Crasta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luijten, M.N.H., Lee, J.X. ., Chen, S., Crasta, K.C. (2018). Generation of Micronuclei and Detection of Chromosome Pulverization. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics