Skip to main content

Recreating Intestinal Peristalsis in the Petri Dish

  • Protocol
  • First Online:
  • 3628 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

Here we describe a culture technique of cells dissociated from the external muscularis of the guinea pig small intestine, which allows us to maintain all the elements involved in the intestinal peristaltic reflex. After a few days in culture, these cells reorganize to form a small group of cells that permit the generation of pacemaker activity, spontaneous contractions, and the development of inhibitory and excitatory junction potentials in the petri dish, all elements involved in the peristaltic reflex. Therefore, these co-cultures are suitable to study the cellular and molecular aspects related to the development, maintenance, and modulation of motor intestinal functions.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Daniel EE, Yazbi AE, Mannarino M, Galante G, Boddy G, Livergant J, Oskouei TE (2007) Do gap junctions play a role in nerve transmissions as well as pacing in mouse intestine? Am J Physiol Gastrointest Liver Physiol 292(3):G734–G745. https://doi.org/10.1152/ajpgi.00428.2006

    Article  CAS  PubMed  Google Scholar 

  2. Coulon P, Landisman CE (2017) The potential role of gap junctional plasticity in the regulation of state. Neuron 93(6):1275–1295. https://doi.org/10.1016/j.neuron.2017.02.041

    Article  CAS  PubMed  Google Scholar 

  3. Maes M, Cogliati B, Crespo Yanguas S, Willebrords J, Vinken M (2015) Roles of connexins and pannexins in digestive homeostasis. Cell Mol Life Sci 72(15):2809–2821. https://doi.org/10.1007/s00018-015-1961-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schneider R (1966) The longitudinal muscle component of the peristaltic reflex in the guinea-pig isolated ileum. Br J Pharmacol Chemother 27(2):387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huizinga JD (1999) Gastrointestinal peristalsis: joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal. Microsc Res Tech 47(4):239–247. https://doi.org/10.1002/(SICI)1097-0029(19991115)47:4<239::AID-JEMT3>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  6. Wood JD (2013) Neurogastroenterology and gastrointestinal motility. In: Rhoades RA, Bell DR (eds) Medical physiology (principles for clinical medicine). Wolters Kluwer/Lippincott Williams & Wilkins, China, pp 449–478

    Google Scholar 

  7. Huizinga JD, Barajas-Lopez C (1990) Ionic and cellular basis for slow-wave-type and spike-like action potentials. Prog Clin Biol Res 327:605–615

    CAS  PubMed  Google Scholar 

  8. Barajas-Lopez C, Huizinga JD (1989) Different mechanisms of contraction generation in circular muscle of canine colon. Am J Phys 256(3 Pt 1):G570–G580

    CAS  Google Scholar 

  9. Huizinga JD, Robinson TL, Thomsen L (2000) The search for the origin of rhythmicity in intestinal contraction; from tissue to single cells. Neurogastroenterol Motil 12(1):3–9. https://doi.org/10.1046/j.1365-2982.2000.00177.x

    Article  CAS  PubMed  Google Scholar 

  10. Espinosa-Luna R, Collins SM, Montano LM, Barajas-Lopez C (1999) Slow wave and spike action potentials recorded in cell cultures from the muscularis externa of the guinea pig small intestine. Can J Physiol Pharmacol 77(8):598–605

    Article  CAS  PubMed  Google Scholar 

  11. Lee CH, Ruben PC (2008) Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels (Austin) 2(6):407–412

    Article  Google Scholar 

  12. Barajas-Lopez C, Peres AL, Espinosa-Luna R (1996) Cellular mechanisms underlying adenosine actions on cholinergic transmission in enteric neurons. Am J Phys 271(1 Pt 1):C264–C275

    CAS  Google Scholar 

  13. Blennerhassett MG, Lourenssen S (2000) Neural regulation of intestinal smooth muscle growth in vitro. Am J Physiol Gastrointest Liver Physiol 279(3):G511–G519

    CAS  PubMed  Google Scholar 

  14. Hopker VH, Saffrey MJ, Burnstock G (1996) Neurite outgrowth of striatal neurons in vitro: involvement of purines in the growth-promoting effect of myenteric plexus explants. Int J Dev Neurosci 14(4):439–451

    Article  CAS  PubMed  Google Scholar 

  15. Ennes HS, Young SH, Raybould HE, Mayer EA (1997) Intercellular communication between dorsal root ganglion cells and colonic smooth muscle cells in vitro. Neuroreport 8(3):733–737

    Article  CAS  PubMed  Google Scholar 

  16. Serio R, Barajas-Lopez C, Daniel EE, Berezin I, Huizinga JD (1991) Slow-wave activity in colon: role of network of submucosal interstitial cells of Cajal. Am J Phys 260(4 Pt 1):G636–G645

    CAS  Google Scholar 

  17. Zhou Y, Tan CK, Ling EA (1997) Distribution of NADPH-diaphorase and nitric oxide synthase-containing neurons in the intramural ganglia of guinea pig urinary bladder. J Anat 190(Pt 1):135–145

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sibaev A, Yuce B, Allescher HD, Goke B, Storr M (2008) A new electrophysiological tool to investigate the spatial neuronal projections within the myenteric ascending reflex of the mouse colon. Clin Exp Pharmacol Physiol 35(7):744–750. https://doi.org/10.1111/j.1440-1681.2008.04919.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT, México (Project No. 81409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Barajas-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Espinosa-Luna, R., Barajas-Espinosa, A.R., Ochoa-Cortez, F., Barajas-López, C. (2018). Recreating Intestinal Peristalsis in the Petri Dish. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics