Skip to main content

Design and In Vitro Use of Antisense Oligonucleotides to Correct Pre-mRNA Splicing Defects in Inherited Retinal Dystrophies

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

Antisense oligonucleotides (AONs) are small molecules able to bind to the pre-mRNA and modulate splicing. The increasing amount of intronic mutations leading to pseudoexon insertion in genes underlying inherited retinal dystrophies (IRDs) has highlighted the potential of AONs as a therapeutic tool for these disorders. Here we describe how to design and test AON molecules in vitro in order to correct pre-mRNA splicing defects involved in IRDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Castro-Miro M, Pomares E, Lores-Motta L et al (2014) Combined genetic and high-throughput strategies for molecular diagnosis of inherited retinal dystrophies. PLoS One 9:e88410. https://doi.org/10.1371/journal.pone.0088410

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40. https://doi.org/10.1186/1750-1172-1-40

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7. https://doi.org/10.1186/1750-1172-2-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7

    Article  CAS  PubMed  Google Scholar 

  5. Sahel JA, Marazova K, Audo I (2014) Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med 5:a017111. https://doi.org/10.1101/cshperspect.a017111

    Article  PubMed  Google Scholar 

  6. Jacobson SG, Acland GM, Aguirre GD et al (2006) Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol Ther 13:1074–1084. https://doi.org/10.1016/j.ymthe.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  7. MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383:1129–1137. https://doi.org/10.1016/S0140-6736(13)62117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hammond SM, Wood MJ (2011) Genetic therapies for RNA mis-splicing diseases. Trends Genet 27:196–205. https://doi.org/10.1016/j.tig.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  9. Arechavala-Gomeza V, Khoo B, Aartsma-Rus A (2014) Splicing modulation therapy in the treatment of genetic diseases. Appl Clin Genet 7:245–252. https://doi.org/10.2147/TACG.S71506

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Koo T, Wood MJ (2013) Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Mol Genet 24:479–488. https://doi.org/10.1089/hum.2012.234

    CAS  Google Scholar 

  11. Aartsma-Rus A (2010) Antisense-mediated modulation of splicing: therapeutic implications for Duchenne muscular dystrophy. RNA Biol 7:453–461

    Article  CAS  PubMed  Google Scholar 

  12. Aartsma-Rus A, Bremmer-Bout M, Janson AA et al (2002) Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul Disord 12(Suppl 1):S71–S77

    Article  PubMed  Google Scholar 

  13. Garanto A, Chung DC, Duijkers L et al (2016) In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum Mol Genet 25:2552–2563. https://doi.org/10.1093/hmg/ddw118

    CAS  PubMed  Google Scholar 

  14. Collin RW, den Hollander AI, van der Velde-Visser SD et al (2012) Antisense oligonucleotide (AON)-based therapy for Leber congenital amaurosis caused by a frequent mutation in CEP290. Mol Ther Nucleic Acids 1:e14. https://doi.org/10.1038/mtna.2012.3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gerard X, Perrault I, Hanein S et al (2012) AON-mediated exon skipping restores ciliation in fibroblasts harboring the common Leber congenital amaurosis CEP290 mutation. Mol Ther Nucleic Acids 1:e29. https://doi.org/10.1038/mtna.2012.21

    Article  PubMed  PubMed Central  Google Scholar 

  16. Slijkerman RW, Vache C, Dona M et al (2016) Antisense oligonucleotide-based splice correction for USH2A-associated retinal degeneration caused by a frequent deep-intronic mutation. Mol Ther Nucleic Acids 5:e381. https://doi.org/10.1038/mtna.2016.89

    Article  CAS  PubMed  Google Scholar 

  17. Bonifert T, Gonzalez Menendez I, Battke F et al (2016) Antisense oligonucleotide mediated splice correction of a deep intronic mutation in OPA1. Mol Ther Nucleic Acids 5:e390. https://doi.org/10.1038/mtna.2016.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roehr B (1998) Fomivirsen approved for CMV retinitis. J Int Assoc Phys AIDS Care 4:14–16

    CAS  Google Scholar 

  19. Vitravene Study Group (2002) Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 133:484–498

    Article  Google Scholar 

  20. Vitravene Study Group (2002) Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS. Am J Ophthalmol 133:475–483

    Article  Google Scholar 

  21. Vitravene Study Group (2002) A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 133:467–474

    Article  Google Scholar 

  22. Garanto A, Duijkers L, Collin RW (2015) Species-dependent splice recognition of a cryptic exon resulting from a recurrent intronic CEP290 mutation that causes congenital blindness. Int J Mol Sci 16:5285–5298. https://doi.org/10.3390/ijms16035285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sangermano R, Bax NM, Bauwens M (2016) Photoreceptor progenitor mRNA analysis reveals exon skipping resulting from the ABCA4 c.5461-10T-->C mutation in Stargardt disease. Ophthalmology 123(6):1375–1385. https://doi.org/10.1016/j.ophtha.2016.01.053

    Article  PubMed  Google Scholar 

  24. Shafique S, Siddiqi S, Schraders M et al (2014) Genetic spectrum of autosomal recessive non-syndromic hearing loss in Pakistani families. PLoS One 9:e100146. https://doi.org/10.1371/journal.pone.0100146

    Article  PubMed  PubMed Central  Google Scholar 

  25. Desviat LR, Perez B, Ugarte M (2012) Minigenes to confirm exon skipping mutations. Methods Mol Biol 867:37–47. https://doi.org/10.1007/978-1-61779-767-5_3

    Article  CAS  PubMed  Google Scholar 

  26. Morse R, Todd AG, Young PJ (2012) Using mini-genes to identify factors that modulate alternative splicing. Methods Mol Biol 867:349–362. https://doi.org/10.1007/978-1-61779-767-5_22

    Article  CAS  PubMed  Google Scholar 

  27. Pomares E, Riera M, Castro-Navarro J et al (2009) Identification of an intronic single-point mutation in RP2 as the cause of semidominant X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 50:5107–5114. https://doi.org/10.1167/iovs.08-3208

    Article  PubMed  Google Scholar 

  28. Aartsma-Rus A (2012) Overview on AON design. Methods Mol Biol 867:117–129. https://doi.org/10.1007/978-1-61779-767-5_8

    Article  CAS  PubMed  Google Scholar 

  29. Aartsma-Rus A, Houlleberghs H, van Deutekom JC et al (2010) Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing. Oligonucleotides 20(2):69–77. https://doi.org/10.1089/oli.2009.0215

    Article  CAS  PubMed  Google Scholar 

  30. Parfitt DA, Lane A, Ramsden CM et al (2016) Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell 18:769–781. https://doi.org/10.1016/j.stem.2016.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tucker BA, Mullins RF, Streb LM et al (2013) Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. eLife 2:e00824. https://doi.org/10.7554/eLife.00824

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gerard X, Perrault I, Munnich A et al (2015) Intravitreal injection of splice-switching oligonucleotides to manipulate splicing in retinal cells. Mol Ther Nucleic Acids 4:e250. https://doi.org/10.1038/mtna.2015.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murray SF, Jazayeri A, Matthes MT et al (2015) Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Invest Ophthalmol Vis Sci 56:6362–6375. https://doi.org/10.1167/iovs.15-16400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garanto A, van Beersum SE, Peters TA et al (2013) Unexpected CEP290 mRNA splicing in a humanized knock-in mouse model for Leber congenital amaurosis. PLoS One 8:e79369. https://doi.org/10.1371/journal.pone.0079369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Netherlands Organisation for Scientific Research (NWO) (VENI 916.10.096), the Foundation Fighting Blindness (FFB) USA (TA-GT-0912-0582-RAD), the JANIVO stichting, the Stichting August F. Deutman Researchfonds Oogheelkunde, the Rotterdamse Vereniging Blindenbelangen, the Algemene Nederlandse Vereniging ter Voorkoming van Blindheid, the Gelderse Blindenstichting, the Stichting Winckel-Sweep and the Stichting Nederlands Oogheelkundig Onderzoek (all to R.W.J.C.) and the following foundations: Algemene Nederlandse Vereniging ter Voorkoming van Blindheid, Stichting Blinden-Penning, Landelijke Stichting voor Blinden en Slechtzienden, Stichting Oogfonds Nederland, Stichting MD Fonds and Stichting Retinal Nederland Fonds that contributed through UitZicht 2015-31, together with the Rotterdamse Stichting Blindenbelangen, Stichting Blindenhulp, Stichting tot Verbetering van het Lot der Blinden, Stichting voor Ooglijders and Stichting Dowilvo, granted to A.G. and R.W.J.C. This work was also supported by the Foundation Fighting Blindness USA, grant no. PPA-0517-0717-RAD (to A.G. and R.W.J.C.). The funding organizations had no role in the design or conduct of this research. They provided unrestricted grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Garanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garanto, A., Collin, R.W.J. (2018). Design and In Vitro Use of Antisense Oligonucleotides to Correct Pre-mRNA Splicing Defects in Inherited Retinal Dystrophies. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics