Skip to main content

Isolation and Characterization of Circulating Microparticles by Flow Cytometry

  • Protocol
  • First Online:
Hypertension

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1527))

Abstract

Microparticles are small fragments (0.1–1.0 μm) of cellular membrane which are shed by cells under conditions of stress. As levels of circulating microparticles are elevated in disease, there has been significant interest in their assessment and quantification under pathological conditions. Here we describe a protocol for the isolation of microparticles from plasma samples and their characterization/quantification by flow cytometry. This assay has been employed for the assessment of microparticle levels in both human and animal plasma and may also be modified for the characterization of microparticles from culture media or from other biological samples (i.e., urine).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burger D et al (2013) Microparticles: biomarkers and beyond. Clin Sci 124(7):423–441

    Article  CAS  PubMed  Google Scholar 

  2. Boulanger CM (2010) Microparticles, vascular function and hypertension. Curr Opin Nephrol Hypertens 19(2):177–180

    Article  CAS  PubMed  Google Scholar 

  3. Gyorgy B et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920

    Article  CAS  PubMed  Google Scholar 

  5. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288

    Article  CAS  PubMed  Google Scholar 

  6. Sinning JM et al (2011) Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J 32(16):2034–2041

    Article  CAS  PubMed  Google Scholar 

  7. Amabile N et al (2005) Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 16(11):3381–3388

    Article  CAS  PubMed  Google Scholar 

  8. Amabile N et al (2012) Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: a pilot study. Nephrol Dial Transplant 27(5):1873–1880

    Article  CAS  PubMed  Google Scholar 

  9. Jy W et al (2004) Measuring circulating cell-derived microparticles. J Thromb Haemost 2(10):1842–1843

    Article  CAS  PubMed  Google Scholar 

  10. Lacroix R et al (2010) Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost 36(8):807–818

    Article  PubMed  Google Scholar 

  11. Lacroix R et al (2012) Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 10(3):437–446

    Article  CAS  PubMed  Google Scholar 

  12. Burger D et al (2012) Microparticles induce cell cycle arrest through redox-sensitive processes in endothelial cells: implications in vascular senescence. J Am Heart Assoc 2012:e001842

    Google Scholar 

  13. Burger D et al (2011) Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 31(8):1898–1907

    Article  CAS  PubMed  Google Scholar 

  14. Simak J, Holada K, Vostal JG (2002) Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biol 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  15. Flores-Nascimento MC et al (2009) Microparticles in deep venous thrombosis, antiphospholipid syndrome and Factor V Leiden. Platelets 20(6):367–375

    Article  CAS  PubMed  Google Scholar 

  16. Bernimoulin M et al (2009) Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost 7(6):1019–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robert S et al (2009) Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost 7(1):190–197

    Article  CAS  PubMed  Google Scholar 

  18. Chirinos JA et al (2005) Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol 45(9):1467–1471

    Article  CAS  PubMed  Google Scholar 

  19. Guiducci S et al (2008) The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis. Arthritis Rheum 58(9):2845–2853

    Article  PubMed  Google Scholar 

  20. Rautou PE et al (2012) Abnormal plasma microparticles impair vasoconstrictor responses in patients with cirrhosis. Gastroenterology 143(1):166–176, e6

    Article  CAS  PubMed  Google Scholar 

  21. Gasser O et al (2003) Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 285(2):243–257

    Article  CAS  PubMed  Google Scholar 

  22. Jayachandran M et al (2008) Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. Am J Physiol Heart Circ Physiol 295(3):H931–H938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baka Z et al (2010) Increased serum concentration of immune cell derived microparticles in polymyositis/dermatomyositis. Immunol Lett 128(2):124–130

    Article  CAS  PubMed  Google Scholar 

  24. Kornek M et al (2011) Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells. Hepatology 53(1):230–242

    Article  CAS  PubMed  Google Scholar 

  25. Lacroix R et al (2010) Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost 8(11):2571–2574

    Article  CAS  PubMed  Google Scholar 

  26. Eyre J et al (2011) Monocyte- and endothelial-derived microparticles induce an inflammatory phenotype in human podocytes. Nephron Exp Nephrol 119(3):e58–e66

    Article  CAS  PubMed  Google Scholar 

  27. Pattanapanyasat K et al (2004) Flow cytometric quantitation of red blood cell vesicles in thalassemia. Cytometry B Clin Cytom 57B(1):23–31

    Article  Google Scholar 

  28. Shah MD et al (2008) Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets 19(5):365–372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.B. is supported by a Kidney Research Scientist Core Education and National Training Program (KRESCENT) New Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan Burger Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Burger, D., Oleynik, P. (2017). Isolation and Characterization of Circulating Microparticles by Flow Cytometry. In: Touyz, R., Schiffrin, E. (eds) Hypertension. Methods in Molecular Biology, vol 1527. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6625-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6625-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6623-3

  • Online ISBN: 978-1-4939-6625-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics