Skip to main content

Measuring Phagosomal pH by Fluorescence Microscopy

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1519))

Abstract

Dual wavelength ratiometric imaging has become a powerful tool for the study of pH in intracellular compartments. It allows for the dynamic imaging of live cells while accounting for changes in the focal plane, differential loading of the fluorescent probe, and photobleaching caused by repeated image acquisitions. Ratiometric microscopic imaging has the added advantage over whole population methods of being able to resolve individual cells and even individual organelles. In this chapter we provide a detailed discussion of the basic principles of ratiometric imaging and its application to the measurement of phagosomal pH, including probe selection, the necessary instrumentation, and calibration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloomfield G, Traynor D, Sander SP et al (2015) Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium. eLife. doi: 10.7554/eLife.04940

  2. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16:907–917. doi:10.1038/ni.3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci 24:9838–9846. doi:10.1523/JNEUROSCI.2557-04.2004

    Article  CAS  PubMed  Google Scholar 

  4. Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiol Bethesda Md 25:8–15. doi:10.1152/physiol.00038.2009

    Article  CAS  Google Scholar 

  5. Manwani D, Bieker JJ (2008) The erythroblastic island. Curr Top Dev Biol 82:23–53. doi:10.1016/S0070-2153(07)00002-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473. doi:10.1146/annurev-immunol-032712-095910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turk V, Stoka V, Vasiljeva O et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88. doi:10.1016/j.bbapap.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Canton J (2014) Phagosome maturation in polarized macrophages. J Leukoc Biol 96:729–738. doi:10.1189/jlb.1MR0114-021R

    Article  PubMed  Google Scholar 

  9. Wreden CC, Johnson J, Tran C et al (2003) The H + -coupled electrogenic lysosomal amino acid transporter LYAAT1 localizes to the axon and plasma membrane of hippocampal neurons. J Neurosci 23:1265–1275

    CAS  PubMed  Google Scholar 

  10. Geisow MJ, Arcy Hart PD, Young MR (1981) Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J Cell Biol 89:645–652

    Article  CAS  PubMed  Google Scholar 

  11. Claus V, Jahraus A, Tjelle T et al (1998) Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages enrichment of cathepsin H in early endosomes. J Biol Chem 273:9842–9851. doi:10.1074/jbc.273.16.9842

    Article  CAS  PubMed  Google Scholar 

  12. Hart PD, Young MR, Jordan MM et al (1983) Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study. J Exp Med 158:477–492. doi:10.1084/jem.158.2.477

    Article  CAS  PubMed  Google Scholar 

  13. Flannagan RS, Jaumouillé V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98. doi:10.1146/annurev-pathol-011811-132445

    Article  CAS  PubMed  Google Scholar 

  14. Maxson ME, Grinstein S (2014) The vacuolar-type H+-ATPase at a glance—more than a proton pump. J Cell Sci 127:4987–4993. doi:10.1242/jcs.158550

    Article  PubMed  Google Scholar 

  15. Cuppoletti J, Aures-Fischer D, Sachs G (1987) The lysosomal H+ pump: 8-azido-ATP inhibition and the role of chloride in H+ transport. Biochim Biophys Acta 899:276–284

    Article  CAS  PubMed  Google Scholar 

  16. Dell’Antone P (1979) Evidence for an ATP-driven “proton pump” in rat liver lysosomes by basic dyes uptake. Biochem Biophys Res Commun 86:180–189

    Article  PubMed  Google Scholar 

  17. Graves AR, Curran PK, Smith CL, Mindell JA (2008) The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–792. doi:10.1038/nature06907

    Article  CAS  PubMed  Google Scholar 

  18. Harikumar P, Reeves JP (1983) The lysosomal proton pump is electrogenic. J Biol Chem 258:10403–10410

    CAS  PubMed  Google Scholar 

  19. Ohkuma S, Moriyama Y, Takano T (1983) Electrogenic nature of lysosomal proton pump as revealed with a cyanine dye. J Biochem 94:1935–1943

    CAS  PubMed  Google Scholar 

  20. Steinberg BE, Huynh KK, Brodovitch A et al (2010) A cation counterflux supports lysosomal acidification. J Cell Biol 189:1171–1186. doi:10.1083/jcb.200911083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Metchnikoff E (1968) Lectures on the comparative pathology of inflammation: delivered at the Pasteur Institute in 1891. Dover Publications, New York

    Google Scholar 

  22. Sprick MG (1956) Phagocytosis of M. tuberculosis and M. smegmatis stained with indicator dyes. Am Rev Tuberc 74:552–565

    CAS  PubMed  Google Scholar 

  23. Pavlov EP, Solov’ev VN (1967) pH changes of cytoplasm in phagocytosis of microbes stained with indicator dyes. Biull Eksp Biol Med 63:78–81

    Article  CAS  PubMed  Google Scholar 

  24. Mandell GL (1970) Intraphagosomal pH of human polymorphonuclear neutrophils. Proc Soc Exp Biol Med 134:447–449

    Article  CAS  PubMed  Google Scholar 

  25. Jensen MS, Bainton DF (1973) Temporal changes in Ph within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte. J Cell Biol 56:379–388. doi:10.1083/jcb.56.2.379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 75:3327–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Canton J, Grinstein S (2015) Measuring lysosomal pH by fluorescence microscopy. Methods Cell Biol 126:85–99. doi:10.1016/bs.mcb.2014.10.021

    Article  PubMed  Google Scholar 

  28. Yates RM, Russell DG (2008) Real-time spectrofluorometric assays for the lumenal environment of the maturing phagosome. Methods Mol Biol 445:311–325. doi:10.1007/978-1-59745-157-4_20

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vergne I, Constant P, Lanéelle G (1998) Phagosomal pH determination by dual fluorescence flow cytometry. Anal Biochem 255:127–132. doi:10.1006/abio.1997.2466

    Article  CAS  PubMed  Google Scholar 

  30. Steinberg B, Grinstein S (2007) Assessment of Phagosome Formation and Maturation by Fluorescence Microscopy. In: DeLeo F, Bokoch G, Quinn M (eds) Neutrophil methods protocols. Humana Press, Totowa, USA, pp 289–300

    Chapter  Google Scholar 

  31. Schlam D, Bohdanowicz M, Chatgilialoglu A et al (2013) Diacylglycerol kinases terminate diacylglycerol signaling during the respiratory burst leading to heterogeneous phagosomal NADPH oxidase activation. J Biol Chem 288:23090–23104. doi:10.1074/jbc.M113.457606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Webb DJ, Brown CM (2013) Epi-fluorescence microscopy. Methods Mol Biol 931:29–59. doi:10.1007/978-1-62703-056-4_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Freundt EC, Czapiga M, Lenardo MJ (2007) Photoconversion of Lysotracker Red to a green fluorescent molecule. Cell Res 17:956–958. doi:10.1038/cr.2007.80

    Article  CAS  PubMed  Google Scholar 

  34. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  35. Tsien RY (1989) Fluorescent indicators of ion concentrations. Methods Cell Biol 30:127–156

    Article  CAS  PubMed  Google Scholar 

  36. Tsien RY, Rink TJ, Poenie M (1985) Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium 6:145–157

    Article  CAS  PubMed  Google Scholar 

  37. Canton J, Khezri R, Glogauer M, Grinstein S (2014) Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol Biol Cell 25:3330–3341. doi:10.1091/mbc.E14-05-0967

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jankowski A, Scott CC, Grinstein S (2002) Determinants of the phagosomal pH in neutrophils. J Biol Chem 277:6059–6066. doi:10.1074/jbc.M110059200

    Article  CAS  PubMed  Google Scholar 

  39. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry (Mosc) 18:2210–2218

    Article  CAS  Google Scholar 

  40. Chow S, Hedley D, Tannock I (1996) Flow cytometric calibration of intracellular pH measurements in viable cells using mixtures of weak acids and bases. Cytometry 24:360–367. doi:10.1002/(SICI)1097-0320(19960801)24:4<360::AID-CYTO7>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.C. was supported by a Cystic Fibrosis Canada postdoctoral fellowship. Research in our laboratory is supported by grants FDN-143202 and MOP-126069 from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Grinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Canton, J., Grinstein, S. (2017). Measuring Phagosomal pH by Fluorescence Microscopy. In: Botelho, R. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 1519. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6581-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6581-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6579-3

  • Online ISBN: 978-1-4939-6581-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics