Skip to main content

Cancer Stem Cells in Tumour Evolution

  • Chapter
  • First Online:
Frontiers in Cancer Research

Abstract

It is hypothesised that the cells making up a cancer can be subdivided into two functional types: cancer stem cells (CSCs) that are capable of self-renewal and so are responsible for the driving the growth of the cancer, and non-CSCs that have a restricted life-span and so do not propagate the cancer in the long term. Here we critically assess the evidence for a population of CSCs in primary tumours, making particular note of the limitations of current methodologies used to study CSCs. We consider how clonal evolution occurs in cancers with CSC architecture and ask how evolution would shape the balance of CSCs to non-CSCs in a tumour. We also deliberate implications of the CSC hypothesis for understanding the evolutionary response of a cancer to therapy. We propose a series of questions to address the uncertainties that undermine the CSC hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/35102167, 35102167 [pii]

    Article  PubMed  CAS  Google Scholar 

  2. Greaves M (2013) Cancer stem cells as ‘units of selection’. Evol Appl 6(1):102–108. doi:10.1111/eva.12017

    Article  PubMed  Google Scholar 

  3. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344. doi:10.1158/0008-5472.CAN-06-3126, 0008-5472.CAN-06-3126 [pii]

    Article  PubMed  CAS  Google Scholar 

  4. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  PubMed  CAS  Google Scholar 

  5. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659. doi:10.1016/j.cell.2009.06.034, S0092-8674(09)00781-8 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers H (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337(6095):730–735. doi:10.1126/science.1224676, science.1224676 [pii]

    Article  PubMed  CAS  Google Scholar 

  7. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. doi:10.1038/nature11287, nature11287 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012) Defining the mode of tumour growth by clonal analysis. Nature 488(7412):527–530. doi:10.1038/nature11344, nature11344 [pii]

    Article  PubMed  CAS  Google Scholar 

  9. Ritsma L, Ellenbroek SI, Zomer A, Snippert HJ, de Sauvage FJ, Simons BD, Clevers H, van Rheenen J (2014) Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507(7492):362–365. doi:10.1038/nature12972, nature12972 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Walther V, Graham TA (2014) Location, location, location! The reality of life for an intestinal stem cell in the crypt. J Pathol. doi:10.1002/path.4370

    Google Scholar 

  11. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644. doi:10.1016/j.cell.2011.07.026, S0092-8674(11)00824-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  12. Sprouffske K, Athena Aktipis C, Radich JP, Carroll M, Nedelcu AM, Maley CC (2013) An evolutionary explanation for the presence of cancer nonstem cells in neoplasms. Evol Appl 6(1):92–101. doi:10.1111/eva.12030

    Article  PubMed  Google Scholar 

  13. Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145(6):851–862. doi:10.1016/j.cell.2011.05.033

    Article  PubMed  CAS  Google Scholar 

  14. Kleinsmith LJ, Pierce GB Jr (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551

    PubMed  CAS  Google Scholar 

  15. Pierce GB, Speers WC (1988) Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res 48(8):1996–2004

    PubMed  CAS  Google Scholar 

  16. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324(5935):1670–1673. doi:10.1126/science.1171837, 324/5935/1670 [pii]

    Google Scholar 

  17. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648. doi:10.1038/367645a0

    Article  PubMed  CAS  Google Scholar 

  18. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67(9):4010–4015. doi:67/9/4010 [pii], 10.1158/0008-5472.CAN-06-4180

  19. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163. doi:10.1073/pnas.0703478104, 0703478104 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi:10.1038/nrc2499, nrc2499 [pii]

    Article  PubMed  CAS  Google Scholar 

  21. Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AM, Ng K, Ma J, Wienholds E, Dunant C, Pollett A, Gallinger S, McPherson J, Mullighan CG, Shibata D, Dick JE (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548. doi:10.1126/science.1227670

    Article  PubMed  CAS  Google Scholar 

  22. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598. doi:10.1038/nature07567, nature07567 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wright NA (2012) Stem cell identification--in vivo lineage analysis versus in vitro isolation and clonal expansion. J Pathol 227(3):255–266. doi:10.1002/path.4018

    Article  PubMed  CAS  Google Scholar 

  24. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337. doi:10.1038/nature12624, nature12624 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gilbertson RJ, Graham TA (2012) Cancer: resolving the stem-cell debate. Nature 488(7412):462–463

    Article  PubMed  CAS  Google Scholar 

  26. Humphries A, Cereser B, Gay LJ, Miller DS, Das B, Gutteridge A, Elia G, Nye E, Jeffery R, Poulsom R, Novelli MR, Rodriguez-Justo M, McDonald SA, Wright NA, Graham TA (2013) Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proc Natl Acad Sci U S A 110(27):E2490–E2499. doi:10.1073/pnas.1220353110, 1220353110 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lamlum H, Papadopoulou A, Ilyas M, Rowan A, Gillet C, Hanby A, Talbot I, Bodmer W, Tomlinson I (2000) APC mutations are sufficient for the growth of early colorectal adenomas. Proc Natl Acad Sci U S A 97(5):2225–2228. doi:10.1073/pnas.040564697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611. doi:10.1038/nature07602, nature07602 [pii]

    Article  PubMed  CAS  Google Scholar 

  29. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457(7229):603–607. doi:10.1038/nature07589, nature07589 [pii]

    Article  PubMed  CAS  Google Scholar 

  30. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, Canli O, Heijmans J, Huels DJ, Moreaux G, Rupec RA, Gerhard M, Schmid R, Barker N, Clevers H, Lang R, Neumann J, Kirchner T, Taketo MM, van den Brink GR, Sansom OJ, Arkan MC, Greten FR (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152(1-2):25–38. doi:10.1016/j.cell.2012.12.012, S0092-8674(12)01499-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  31. Komarova NL, Wang L (2004) Initiation of colorectal cancer: where do the two hits hit? Cell Cycle 3(12):1558–1565

    Article  PubMed  CAS  Google Scholar 

  32. Scoville DH, Sato T, He XC, Li L (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134(3):849–864. doi:10.1053/j.gastro.2008.01.079, S0016-5085(08)00185-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  33. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013, S0092-8674(11)00127-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  34. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi:10.1016/j.cell.2008.03.027, S0092-8674(08)00444-3 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zurrer-Hardi U, Bell G, Tam WL, Mani SA, van Oudenaarden A, Weinberg RA (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148(5):1015–1028. doi:10.1016/j.cell.2012.02.008, S0092-8674(12)00165-1 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1-2):56–65. doi:10.1159/000084509, 84509 [pii]

    Article  PubMed  CAS  Google Scholar 

  37. Brabletz T (2012) EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell 22(6):699–701. doi:10.1016/j.ccr.2012.11.009, S1535-6108(12)00488-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  38. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14(1):43–47. doi:10.1016/j.gde.2003.11.007, S0959437X03001734 [pii]

    Article  PubMed  CAS  Google Scholar 

  39. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, Cao L, Baiazitov R, Du W, Sydorenko N, Moon YC, Gibson L, Wang Y, Leung C, Iscove NN, Arrowsmith CH, Szentgyorgyi E, Gallinger S, Dick JE, O’Brien CA (2014) Self-renewal as a therapeutic target in human colorectal cancer. Nat Med 20(1):29–36. doi:10.1038/nm.3418, nm.3418 [pii]

    Article  PubMed  CAS  Google Scholar 

  40. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846. doi:10.1038/nrc2256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kleffel S, Schatton T (2013) Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol 734:145–179. doi:10.1007/978-1-4614-1445-2_8

    Article  PubMed  CAS  Google Scholar 

  42. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67(8):3560–3564. doi:67/8/3560 [pii], 10.1158/0008-5472.CAN-06-4238

  43. Sottoriva A, Verhoeff JJ, Borovski T, McWeeney SK, Naumov L, Medema JP, Sloot PM, Vermeulen L (2010) Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res 70(1):46–56. doi:10.1158/0008-5472.CAN-09-3663, 0008-5472.CAN-09-3663 [pii]

    Article  PubMed  CAS  Google Scholar 

  44. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Munoz P, Clevers H, Sancho E, Mangues R, Batlle E (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524. doi:10.1016/j.stem.2011.02.020, S1934-5909(11)00110-X [pii]

    Article  PubMed  CAS  Google Scholar 

  45. van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S, van der Pol MA, Waisfisz Q, Ossenkoppele GJ, Schuurhuis GJ (2005) High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 11(18):6520–6527. doi:10.1158/1078-0432.CCR-05-0468

    Article  PubMed  CAS  Google Scholar 

  46. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829. doi:10.1016/j.cell.2009.08.017, S0092-8674(09)01030-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  47. Merlo LM, Maley CC (2010) The role of genetic diversity in cancer. J Clin Invest 120(2):401–403. doi:10.1172/JCI42088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R, McGranahan N, Matthews N, Santos CR, Martinez P, Phillimore B, Begum S, Rabinowitz A, Spencer-Dene B, Gulati S, Bates PA, Stamp G, Pickering L, Gore M, Nicol DL, Hazell S, Futreal PA, Stewart A, Swanton C (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46(3):225–233. doi:10.1038/ng.2891, ng.2891 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Anderson AR, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915. doi:10.1016/j.cell.2006.09.042, S0092-8674(06)01348-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  50. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354. doi:10.1038/nature12626, nature12626 [pii]

    Article  PubMed  CAS  Google Scholar 

  51. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A 108(19):7950–7955. doi:10.1073/pnas.1102454108, 1102454108 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavare S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110(10):4009–4014. doi:10.1073/pnas.1219747110, 1219747110 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sottoriva A, Vermeulen L, Tavare S (2011) Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput Biol 7(5), e1001132. doi:10.1371/journal.pcbi.1001132, 10-PLCB-RA-2045R3 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sottoriva A, Spiteri I, Shibata D, Curtis C, Tavare S (2013) Single-molecule genomic data delineate patient-specific tumor profiles and cancer stem cell organization. Cancer Res 73(1):41–49. doi:10.1158/0008-5472.CAN-12-22730008-5472.CAN-12-2273[pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Declaration

The authors have no conflict of interests to declare.

Acknowledgments The authors are grateful for funding from Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor A. Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag New York

About this chapter

Cite this chapter

Graham, T.A., Leedham, S.J. (2016). Cancer Stem Cells in Tumour Evolution. In: Maley, C., Greaves, M. (eds) Frontiers in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6460-4_6

Download citation

Publish with us

Policies and ethics