Skip to main content

Mismatches with Our Ancestral Environments and Cancer Risk

  • Chapter
  • First Online:
  • 623 Accesses

Abstract

In this chapter, we explore whether the mismatch between current lifestyle exposures and those of our ancestral, Neolithic environments substantially escalates an intrinsic risk of cancer. We present data that supports the mismatch concept for the common cancers (skin, breast and prostate) of modern or affluent societies as well as for the cancers in less developed societies. We discuss the open questions in this area, focusing on the constraints and trade-offs underlying cancer susceptibility. Then, we note a number of obstacles to making progress in this area and how those might be overcome. We conclude by suggesting several fruitful directions for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Greaves M (2014) Does everyone develop covert cancer? Nat Rev Cancer 14(4):209–210

    Article  CAS  PubMed  Google Scholar 

  2. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. American Cancer Society (2015) Cancer facts & figures 2015. American Cancer Society, Atlanta

    Google Scholar 

  4. Nesse RM (2005) Maladaptation and natural selection. Q Rev Biol 80(1):62–70

    Article  PubMed  Google Scholar 

  5. Williams GC, Nesse RM (1991) The dawn of darwinian medicine. Q Rev Biol 66(1):1–22

    Article  CAS  PubMed  Google Scholar 

  6. Stearns SC (2012) Evolutionary medicine: its scope, interest and potential. Proc R Soc B Biol Sci 279(1746):4305–4321

    Article  CAS  Google Scholar 

  7. Eaton SB, Konner M, Shostak M (1988) Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med 84(4):739–749

    Article  CAS  PubMed  Google Scholar 

  8. Greaves M (2007) Darwinian medicine: a case for cancer. Nat Rev Cancer 7(3):213–221

    Article  CAS  PubMed  Google Scholar 

  9. Greaves MF (2000) Cancer: the evolutionary legacy. Oxford University Press, Oxford

    Google Scholar 

  10. Irons W (1998) Adaptively relevant environments versus the environment of evolutionary adaptedness. Evol Anthropol 6(6):194–204

    Article  Google Scholar 

  11. Jablonski NG, Chaplin G (2010) Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci U S A 107(Suppl 2):8962–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coe K, Steadman L (1995) The human breast and the ancestral reproductive cycle. Hum Nat 6(3):197–220

    Article  CAS  PubMed  Google Scholar 

  13. Strassmann BI (1999) Menstrual cycling and breast cancer: an evolutionary perspective. J Womens Health 8(2):193–202

    Article  CAS  PubMed  Google Scholar 

  14. Eaton SB et al (1994) Women’s reproductive cancers in evolutionary context. Q Rev Biol 69(3):353–367

    Article  CAS  PubMed  Google Scholar 

  15. Wolin KY, Carson K, Colditz GA (2010) Obesity and cancer. Oncologist 15(6):556–565

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sauer LA et al (2005) Eicosapentaenoic acid suppresses cell proliferation in MCF-7 human breast cancer xenografts in nude rats via a pertussis toxin-sensitive signal transduction pathway. J Nutr 135(9):2124–2129

    CAS  PubMed  Google Scholar 

  17. Goh KL (2007) Changing trends in gastrointestinal disease in the Asia–Pacific region. J Dig Dis 8(4):179–185

    Article  CAS  PubMed  Google Scholar 

  18. Krieger N et al (2003) Breast cancer, birth cohorts, and Epstein-Barr virus: methodological issues in exploring the “hygiene hypothesis” in relation to breast cancer, Hodgkin’s disease, and stomach cancer. Cancer Epidemiol Biomarkers Prev 12(5):405–411

    PubMed  Google Scholar 

  19. Davis CD, Milner JA (2009) Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem 20(10):743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peto R et al (2000) Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ 321(7257):323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Henderson DW et al (2004) After Helsinki: a multidisciplinary review of the relationship between asbestos exposure and lung cancer, with emphasis on studies published during 1997–2004. Pathology 36(6):517–550

    Article  CAS  PubMed  Google Scholar 

  22. Moysich KB, Menezes RJ, Michalek AM (2002) Chernobyl-related ionising radiation exposure and cancer risk: an epidemiological review. Lancet Oncol 3(5):269–279

    Article  PubMed  Google Scholar 

  23. Birnbaum LS, Fenton SE (2003) Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect 111(4):389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1992) Solar and ultraviolet radiation. IARC monographs on carcinogenic risks to humans, vol 55

    Google Scholar 

  25. Greaves M (2014) Was skin cancer a selective force for black pigmentation in early hominin evolution? Proc R Soc B Biol Sci 281(1781):20132955

    Article  Google Scholar 

  26. Scherer D, Kumar R (2010) Genetics of pigmentation in skin cancer - a review. Mutat Res 705(2):141–153

    Article  CAS  PubMed  Google Scholar 

  27. Harding RM et al (2000) Evidence for variable selective pressures at MC1R. Am J Hum Genet 66(4):1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jablonski NG, Chaplin G (2010) Human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci U S A 107:8962–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loomis WF (1967) Skin-pigment regulation of vitamin-D biosynthesis in man. Science 157(3788):501–506

    Article  CAS  PubMed  Google Scholar 

  30. Houghton AN, Polsky D (2002) Focus on melanoma. Cancer Cell 2(4):275–278

    Article  CAS  PubMed  Google Scholar 

  31. Byrne C et al (1995) Mammographic features and breast-cancer risk - effects with time, age, and menopause status. J Natl Cancer Inst 87(21):1622–1629

    Article  CAS  PubMed  Google Scholar 

  32. Hulka BS, Stark AT (1995) Breast-cancer - cause and prevention. Lancet 346(8979):883–887

    Article  CAS  PubMed  Google Scholar 

  33. Lipworth L (1995) Epidemiology of breast-cancer. Eur J Cancer Prev 4(1):7–30

    Article  CAS  PubMed  Google Scholar 

  34. Pike MC et al (1983) Hormonal risk-factors, breast-tissue Age and the age-incidence of breast-cancer. Nature 303(5920):767–770

    Article  CAS  PubMed  Google Scholar 

  35. Johnson PA, Giles JR (2013) The hen as a model of ovarian cancer. Nat Rev Cancer 13(6):432–436

    Article  CAS  PubMed  Google Scholar 

  36. Narod SA (2011) Hormone replacement therapy and the risk of breast cancer. Nat Rev Clin Oncol 8(11):669–676

    Article  CAS  PubMed  Google Scholar 

  37. Symmers WSC (1968) Carcinoma of breast in trans-sexual individuals after surgical and hormonal interference with primary and secondary sex characteristics. Br Med J 2(5597):83–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marlowe FW (2005) Hunter-gatherers and human evolution. Evol Anthropol 14(2):54–67

    Article  Google Scholar 

  39. Martin JA et al (2015) Births: final data for 2013. Natl Vital Stat Rep 64(1):1–65, National Center for Health Statistics

    Google Scholar 

  40. Centers for Disease Control and Prevention (2014) Breastfeeding report card—United States, 2014

    Google Scholar 

  41. Aktipis CA et al (2014) Modern reproductive patterns associated with estrogen receptor positive but not negative breast cancer susceptibility. Evol Med Public Health 2015(1):52–74

    Google Scholar 

  42. Welch HG, Black WC (1997) Using autopsy series to estimate the disease “reservoir” for ductal carcinoma in situ of the breast: how much more breast cancer can we find? Ann Intern Med 127(11):1023–1028

    Article  CAS  PubMed  Google Scholar 

  43. Sakr WA et al (1993) The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male-patients. J Urol 150(2):379–385

    CAS  PubMed  Google Scholar 

  44. Coffey DS (2001) Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology 57(4A):31–38

    Article  CAS  PubMed  Google Scholar 

  45. Lichtenstein P et al (2000) Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85

    Article  CAS  PubMed  Google Scholar 

  46. Gronberg H (2003) Prostate cancer epidemiology. Lancet 361(9360):859–864

    Article  PubMed  Google Scholar 

  47. Greaves M (2002) Cancer causation: the Darwinian downside of past success? Lancet Oncol 3(4):244–251

    Article  CAS  PubMed  Google Scholar 

  48. Szabo CI, King MC (1997) Population genetics of BRCA1 and BRCA2. Am J Hum Genet 60(5):1013–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith KR et al (2011) Effects of BRCA1 and BRCA2 mutations on female fertility. Proceedings. Biological sciences/The Royal Society

    Google Scholar 

  50. Irvine RA et al (1995) The Cag and Ggc microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate-cancer. Cancer Res 55(9):1937–1940

    CAS  PubMed  Google Scholar 

  51. Eeles RA et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40(3):316–321

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Closas M et al (2013) Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 45(4):392–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dunbier AK et al (2011) ESR1 is co-expressed with closely adjacent uncharacterised genes spanning a breast cancer susceptibility locus at 6q25.1. PLoS Genet 7(4):e1001382

    Google Scholar 

  54. Ghoussaini M et al (2012) Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 44(3):312–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Low YL et al (2010) Multi-variant pathway association analysis reveals the importance of genetic determinants of estrogen metabolism in breast and endometrial cancer susceptibility. PLoS Genet 6(7):e1001012

    Google Scholar 

  56. Johnson N et al (2012) CYP3A variation, premenopausal estrone levels, and breast cancer risk. J Natl Cancer Inst 104(9):657–669

    Article  CAS  PubMed  Google Scholar 

  57. Prescott J et al (2012) Genome-wide association study of circulating estradiol, testosterone, and sex hormone-binding globulin in postmenopausal women. PLoS One 7(6), e37815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scheinfeldt LB, Tishkoff SA (2013) Recent human adaptation: genomic approaches, interpretation and insights. Nat Rev Genet 14(10):692–702

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kamberov YG et al (2013) Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell 152(4):691–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harris EE, Meyer D (2006) The molecular signature of selection underlying human adaptations. Am J Phys Anthropol 131(S43):89–130

    Article  Google Scholar 

  61. Voight BF et al (2006) A map of recent positive selection in the human genome. PLoS Biol 4(3), e72

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nielsen R et al (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3(6), e170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sabeti PC et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rapley EA et al (2009) A genome-wide association study of testicular germ cell tumor. Nat Genet 41(7):807–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moutsianas L et al (2011) Multiple Hodgkin lymphoma–associated loci within the HLA region at chromosome 6p21. 3. Blood 118(3):670–674

    Article  CAS  PubMed  Google Scholar 

  66. Zur Hausen H (2007) Infections causing human cancer. Wiley, Hoboken

    Google Scholar 

  67. Goedert JJ (2000) Infectious causes of cancer: targets for intervention. Springer, New York

    Google Scholar 

  68. Ewald PW, Ewald HAS (2012) Infection, mutation, and cancer evolution. J Mol Med 90(5):535–541

    Article  CAS  PubMed  Google Scholar 

  69. Arthur JC et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338(6103):120–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hill AVS (2001) The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet 2:373–400

    Article  CAS  PubMed  Google Scholar 

  71. Schetter AJ, Heegaard NH, Harris CC (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31(1):37–49

    Article  CAS  PubMed  Google Scholar 

  72. Culley FJ, Pollott J, Openshaw PJ (2002) Age at first viral infection determines the pattern of T cell–mediated disease during reinfection in adulthood. J Exp Med 196(10):1381–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harker JA et al (2010) Delivery of cytokines by recombinant virus in early life alters the immune response to adult lung infection. J Virol 84(10):5294–5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rook GA (2009) The hygiene hypothesis and Darwinian medicine. Springer, New York

    Google Scholar 

  75. Cozen W et al (2009) A protective role for early oral exposures in the etiology of young adult Hodgkin lymphoma. Blood 114(19):4014–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6(3):193–203

    Article  CAS  PubMed  Google Scholar 

  77. Greaves M (2009) The ‘delayed infection’(aka ‘hygiene’) hypothesis for childhood leukaemia. In: Rook GA (ed) The hygiene hypothesis and Darwinian medicine. Springer, Basel, pp 239–255

    Chapter  Google Scholar 

  78. Spix C et al (2008) Temporal trends in the incidence rate of childhood cancer in Germany 1987–2004. Int J Cancer 122(8):1859–1867

    Article  CAS  PubMed  Google Scholar 

  79. Surtees PG et al (2010) No evidence that social stress is associated with breast cancer incidence. Breast Cancer Res Treat 120(1):169–174

    Article  PubMed  Google Scholar 

  80. Keinan-Boker L et al (2009) Cancer incidence in Israeli Jewish survivors of World War II. J Natl Cancer Inst 101(21):1489–1500

    Article  PubMed  Google Scholar 

  81. Elias SG et al (2004) Breast cancer risk after caloric restriction during the 1944-1945 Dutch famine. J Natl Cancer Inst 96(7):539–546

    Article  PubMed  Google Scholar 

  82. Koupil I et al (2009) Cancer mortality in women and men who survived the siege of Leningrad (1941-1944). Int J Cancer 124(6):1416–1421

    Article  CAS  PubMed  Google Scholar 

  83. Jacobs JR, Bovasso GB (2000) Early and chronic stress and their relation to breast cancer. Psychol Med 30(3):669–678

    Article  CAS  PubMed  Google Scholar 

  84. Eskelinen M, Ollonen P (2010) Life stress due to losses and deficit in childhood and adolescence as breast cancer risk factor: a prospective case-control study in Kuopio, Finland. Anticancer Res 30(10):4303–4308

    PubMed  Google Scholar 

  85. Williams JB et al (2009) A model of gene-environment interaction reveals altered mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev Res (Phila) 2(10):850–861

    Article  CAS  Google Scholar 

  86. Hermes GL, McClintock MK (2008) Isolation and the timing of mammary gland development, gonadarche, and ovarian senescence: implications for mammary tumor burden. Dev Psychobiol 50(4):353–360

    Article  PubMed  Google Scholar 

  87. Schwarz S, Messerschmidt H, Dören M (2007) Psychosocial risk factors for cancer development. Med Klin (Munich) 102(12):967–979

    Article  Google Scholar 

  88. Reiche EMV, Nunes SOV, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5(10):617–625

    Article  CAS  PubMed  Google Scholar 

  89. Archer J (2006) Testosterone and human aggression: an evaluation of the challenge hypothesis. Neurosci Biobehav Rev 30(3):319–345

    Article  CAS  PubMed  Google Scholar 

  90. Alvarado LC (2013) Do evolutionary life-history trade-offs influence prostate cancer risk? a review of population variation in testosterone levels and prostate cancer disparities. Evol Appl 6(1):117–133

    Article  PubMed  Google Scholar 

  91. Stanton SJ, Schultheiss OC (2007) Basal and dynamic relationships between implicit power motivation and estradiol in women. Horm Behav 52(5):571–580

    Article  CAS  PubMed  Google Scholar 

  92. Boddy AM et al (2015) Cancer susceptibility and reproductive trade-offs: a model of the evolution of cancer defences. Philos Trans R Soc Lond B Biol Sci 370(1673):20140220

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449(7164):811–818

    Article  CAS  PubMed  Google Scholar 

  94. Arthur JC, Jobin C (2011) The struggle within: microbial influences on colorectal cancer. Inflamm Bowel Dis 17(1):396–409

    Article  PubMed  PubMed Central  Google Scholar 

  95. Elinav E et al (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771

    Article  CAS  PubMed  Google Scholar 

  96. Aktipis C, Nesse RM (2013) Evolutionary foundations for cancer biology. Evol Appl 6(1):144–159

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pédron T et al (2012) A crypt-specific core microbiota resides in the mouse colon. MBio 3(3):e00116-12

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fakhry S et al (2009) Characterization of intestinal bacteria tightly bound to the human ileal epithelium. Res Microbiol 160(10):817–823

    Article  CAS  PubMed  Google Scholar 

  99. Cherbuy C et al (2010) Microbiota matures colonic epithelium through a coordinated induction of cell cycle-related proteins in gnotobiotic rat. Am J Physiol Gastrointest Liver Physiol 299(2):G348–G357

    Article  CAS  PubMed  Google Scholar 

  100. Ulrich CM, Steindorf K, Berger NA (2013) Exercise, energy balance and cancer. Springer, New York

    Book  Google Scholar 

  101. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: warburg and beyond. Cell 134(5):703–707

    Article  CAS  PubMed  Google Scholar 

  102. Weinhouse S et al (1956) On respiratory impairment in cancer cells., http://adsabs.harvard.edu/abs/1956Sci…124.267W

    Google Scholar 

  103. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  104. Greenwald P, Clifford CK, Milner JA (2001) Diet and cancer prevention. Eur J Cancer 37(8):948–965

    Article  CAS  PubMed  Google Scholar 

  105. Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res 63(14):3847–3854

    CAS  PubMed  Google Scholar 

  106. Robinson GE, Fernald RD, Clayton DF (2008) Genes and social behavior. Science 322(5903):896–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weaver ICG et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    Article  CAS  PubMed  Google Scholar 

  108. Silverman MN, Sternberg EM (2012) Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 1261:55–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Volden PA et al (2013) Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue. Cancer Prev Res (Phila) 6(7):634–645

    Article  CAS  Google Scholar 

  110. Champagne FA (2010) Epigenetic influence of social experiences across the lifespan. Dev Psychobiol 52(4):299–311

    Article  CAS  PubMed  Google Scholar 

  111. Roth TL, Sweatt JD (2011) Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 52(4):398–408

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hidaka BH et al (2015) The status of evolutionary medicine education in North American medical schools. BMC Med Educ 15(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nesse RM et al (2010) Making evolutionary biology a basic science for medicine. Proc Natl Acad Sci 107(Suppl 1):1800–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Sir John Templeton Foundation, National Institutes of Health (R01 CA170595), the Department of Psychology at Arizona State University, the Center for Evolution and Cancer at UCSF and the Centre for Evolution and Cancer at the Institute of Cancer Research, London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Athena Aktipis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag New York

About this chapter

Cite this chapter

Greaves, M., Aktipis, C.A. (2016). Mismatches with Our Ancestral Environments and Cancer Risk. In: Maley, C., Greaves, M. (eds) Frontiers in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6460-4_10

Download citation

Publish with us

Policies and ethics