Skip to main content

Pain and Touch: Roles for C-Tactile Afferents in Pain Inhibition and Tactile Allodynia

  • Chapter
  • First Online:
Affective Touch and the Neurophysiology of CT Afferents

Abstract

In humans there is a positive correlation between the pleasantness perception of soft skin stroking and the firing rate of unmyelinated C-low-threshold mechanoreceptive afferents (often abbreviated C-LTMR in animals and C-tactile and CT afferents in humans). CT-targeted touch reduces heat pain in humans suggesting that activation of the CT system modulates pain perception. This finding is supported by animal work which has shown that C-LTMRs inhibit nociceptive signaling at the spinal cord level, release a protein (TAFA4) with analgesic effects, and have positively reinforcing and anxiolytic behavioral effects. However, under pathophysiological conditions, research in mice and humans instead suggests a role for CLTMRs and CTs in tactile allodynia. There is a divergence in results with some studies pointing to CLTMRs/CTs driving tactile allodynia, whereas others suggest a modulatory role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerley RBW, Wasling HB, Liljencrantz H, Olausson J, Johnson H, Wessberg RD (2014) Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J Neurosci 34(8):2879–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew D (2010) Quantitative characterization of low-threshold mechanoreceptor inputs to lamina I spinoparabrachial neurons in the rat. J Physiol 588(Pt 1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Apkarian AV et al (1992) Persistent pain inhibits contralateral somatosensory cortical activity in humans. Neurosci Lett 140(2):141–147

    Article  CAS  PubMed  Google Scholar 

  • Arcourt A, Lechner SG (2015) Peripheral and spinal circuits involved in mechanical allodynia. Pain 156(2):220–221

    Article  PubMed  Google Scholar 

  • Bjornsdotter M et al (2009) Somatotopic organization of gentle touch processing in the posterior insular cortex. J Neurosci 29(29):9314–9320

    Article  PubMed  Google Scholar 

  • Bruggemann J, Shi T, Apkarian AV (1998) Viscerosomatic interactions in the thalamic ventral posterolateral nucleus (VPL) of the squirrel monkey. Brain Res 787(2):269–276

    Article  CAS  PubMed  Google Scholar 

  • Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52(1):77–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JN et al (1988) Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 32(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Cervero F, Laird JM (1996) Mechanisms of touch-evoked pain (allodynia): a new model. Pain 68(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666

    Article  CAS  PubMed  Google Scholar 

  • Delfini MC et al (2013) TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep 5(2):378–388

    Article  CAS  PubMed  Google Scholar 

  • Dougherty PM, Willis WD, Lenz FA (1998) Transient inhibition of responses to thermal stimuli of spinal sensory tract neurons in monkeys during sensitization by intradermal capsaicin. Pain 77(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Dum J, Herz A (1984) Endorphinergic modulation of neural reward systems indicated by behavioral changes. Pharmacol Biochem Behav 21(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Ellingsen DM et al (2013) Placebo improves pleasure and pain through opposite modulation of sensory processing. Proc Natl Acad Sci U S A 110(44):17993–17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essick G (1988) Factors affecting direction discrimination moving of tactile stimuli. In: Morley JW (ed) Neural aspects of tactile sensation. Elsevier Science B.V., Amsterdam

    Google Scholar 

  • Fields HL (2000) Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 122:245–253

    Article  CAS  PubMed  Google Scholar 

  • Flor H et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375(6531):482–484

    Article  CAS  PubMed  Google Scholar 

  • Flor H et al (1997) Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 224(1):5–8

    Article  CAS  PubMed  Google Scholar 

  • Goldscheider A (1916) Über Irradiation und Hyperästhesie im Bereich der Hautsensibilität. Pflugers Arch Gesamte Physiol Menschen Tiere 165:1–36

    Article  Google Scholar 

  • Goldscheider A (1917) Weitere Mittellungen zur Physiologie der Sinnesnerven der Haut. Pflugers Arch Gesamte Physiol Menschen Tiere 168:36–88

    Article  Google Scholar 

  • Gordon I et al (2013) Brain mechanisms for processing affective touch. Hum Brain Mapp 34(4):914–922

    Article  PubMed  Google Scholar 

  • Gracely RH, Lynch SA, Bennett GJ (1992) Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain 51(2):175–194

    Article  CAS  PubMed  Google Scholar 

  • Hollins M, Sigurdsson A (1998) Vibrotactile amplitude and frequency discrimination in temporomandibular disorders. Pain 75(1):59–67

    Article  CAS  PubMed  Google Scholar 

  • Iadarola MJ et al (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121(Pt 5):931–947

    Article  PubMed  Google Scholar 

  • Johansson RS et al (1988) Mechanoreceptor activity from the human face and oral mucosa. Exp Brain Res 72(1):204–208

    Article  CAS  PubMed  Google Scholar 

  • Kenntner-Mabiala R, Pauli P (2005) Affective modulation of brain potentials to painful and nonpainful stimuli. Psychophysiology 42(5):559–567

    Article  PubMed  Google Scholar 

  • Koltzenburg M, Lundberg LE, Torebjork HE (1992) Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 51(2):207–219

    Article  CAS  PubMed  Google Scholar 

  • Krämer HH, Lundblad L, Elam M, Olausson H (2008) Pain inhibition by brush stroking is mediated by unmyelinated tactile afferents. Department of Clinical Neurophysiology, University of Gothenburg, Sweden. Department of Neurology, University Mainz, Germany: SfN abstract and poster

    Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5):341–372

    Article  PubMed  Google Scholar 

  • Kumazawa T, Perl ER (1977) Primate cutaneous sensory units with unmyelinated-(C) afferent-fibers. J Neurophysiol 40(6):1325–1338

    CAS  PubMed  Google Scholar 

  • Landerholm AH, Hansson PT (2011) Mechanisms of dynamic mechanical allodynia and dysesthesia in patients with peripheral and central neuropathic pain. Eur J Pain 15(5):498–503

    Article  PubMed  Google Scholar 

  • Leknes S, Tracey I (2008) A common neurobiology for pain and pleasure. Nat Rev Neurosci 9(4):314–320

    Article  CAS  PubMed  Google Scholar 

  • Lewis JS, Schweinhardt P (2012) Perceptions of the painful body: the relationship between body perception disturbance, pain and tactile discrimination in complex regional pain syndrome. Eur J Pain 16(9):1320–1330

    Article  CAS  PubMed  Google Scholar 

  • Liljencrantz J et al (2012) C-tactile afferent stimulation modulate pain perception. Abstract SfN 2012

    Google Scholar 

  • Liljencrantz J et al (2013) Altered C-tactile processing in human dynamic tactile allodynia. Pain 154(2):227–234

    Article  PubMed  Google Scholar 

  • Liljencrantz J et al (2014) Discriminative and affective touch in human experimental tactile allodynia. Neurosci Lett 563:75–79

    Article  CAS  PubMed  Google Scholar 

  • Loken LS et al (2009) Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci 12(5):547–548

    Article  PubMed  Google Scholar 

  • Lou S et al (2013) Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 33(3):870–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Perl ER (2003) A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci 23(25):8752–8758

    CAS  PubMed  Google Scholar 

  • Magerl W, Treede RD (2004) Secondary tactile hypoesthesia: a novel type of pain-induced somatosensory plasticity in human subjects. Neurosci Lett 361(1–3):136–139

    Article  CAS  PubMed  Google Scholar 

  • Maihofner C et al (2003) Cortical processing of brush-evoked allodynia. Neuroreport 14(6):785–789

    Article  PubMed  Google Scholar 

  • Maihofner C et al (2004) Cortical reorganization during recovery from complex regional pain syndrome. Neurology 63(4):693–701

    Article  PubMed  Google Scholar 

  • Maihofner C et al (2006) Mislocalization of tactile stimulation in patients with complex regional pain syndrome. J Neurol 253(6):772–779

    Article  PubMed  Google Scholar 

  • Mancini F et al (2014) Pain relief by touch: a quantitative approach. Pain 155(3):635–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150(3699):971–979

    Article  CAS  PubMed  Google Scholar 

  • Mendell LM (2014) Constructing and deconstructing the gate theory of pain. Pain 155(2):210–216

    Article  PubMed  Google Scholar 

  • Moriwaki K, Yuge O (1999) Topographical features of cutaneous tactile hypoesthetic and hyperesthetic abnormalities in chronic pain. Pain 81(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  • Morrison I et al (2011) Reduced C-afferent fibre density affects perceived pleasantness and empathy for touch. Brain 134(Pt 4):1116–1126

    Article  PubMed  Google Scholar 

  • Moseley GL (2008) I can't find it! Distorted body image and tactile dysfunction in patients with chronic back pain. Pain 140(1):239–243

    Article  PubMed  Google Scholar 

  • Nagi SS et al (2011) Allodynia mediated by C-tactile afferents in human hairy skin. J Physiol 589(Pt 16):4065–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan PW (1960) Improvement in cutaneous sensibility associated with relief of pain. J Neurol Neurosurg Psychiatry 23:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordin M (1990) Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibers in the human supraorbital nerve. J Physiol 426:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olausson H et al (1997) Directional sensibility for quantification of tactile dysfunction. Muscle Nerve 20(11):1414–1421

    Article  CAS  PubMed  Google Scholar 

  • Olausson H et al (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5(9):900–904

    Article  CAS  PubMed  Google Scholar 

  • Petersen KL, Rowbotham MC (1999) A new human experimental pain model: the heat/capsaicin sensitization model. Neuroreport 10(7):1511–1516

    Article  CAS  PubMed  Google Scholar 

  • Petrovic P et al (2002) Placebo and opioid analgesia—imaging a shared neuronal network. Science 295(5560):1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Pleger B et al (2005) Sensorimotor retuning [corrected] in complex regional pain syndrome parallels pain reduction. Ann Neurol 57(3):425–429

    Article  PubMed  Google Scholar 

  • Rasmussen PV et al (2004) Symptoms and signs in patients with suspected neuropathic pain. Pain 110(1–2):461–469

    Article  PubMed  Google Scholar 

  • Reboucas EC et al (2005) Effect of the blockade of mu1-opioid and 5HT2A-serotonergic/alpha1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology (Berl) 179(2):349–355

    Article  CAS  Google Scholar 

  • Roy M, Peretz I, Rainville P (2008) Emotional valence contributes to music-induced analgesia. Pain 134(1–2):140–147

    Article  PubMed  Google Scholar 

  • Seal RP et al (2009) Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462(7273):651–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadoni A et al (2012) The interaction of emotional touch and pain in the insula. SfN Abstract

    Google Scholar 

  • Stanton TR et al (2013) Tactile acuity is disrupted in osteoarthritis but is unrelated to disruptions in motor imagery performance. Rheumatology (Oxford) 52(8):1509–1519

    Article  Google Scholar 

  • Strigo IA et al (2011) Tactile C afferents modulate heat pain. SfN abstract

    Google Scholar 

  • Torebjork HE, Lundberg LE, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol 448:765–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treede RD, Cole JD (1993) Dissociated secondary hyperalgesia in a subject with a large-fibre sensory neuropathy. Pain 53(2):169–174

    Article  CAS  PubMed  Google Scholar 

  • Vallbo A et al (1993) A system of unmyelinated afferents for innocuous mechanoreception in the human skin. Brain Res 628(1–2):301–304

    Article  CAS  PubMed  Google Scholar 

  • Villemure C, Bushnell MC (2009) Mood influences supraspinal pain processing separately from attention. J Neurosci 29(3):705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villemure C, Slotnick BM, Bushnell MC (2003) Effects of odors on pain perception: deciphering the roles of emotion and attention. Pain 106(1–2):101–108

    Article  PubMed  Google Scholar 

  • Vrontou S et al (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493(7434):669–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasner G, Baron R, Janig W (1999) Dynamic mechanical allodynia in humans is not mediated by a central presynaptic interaction of A beta-mechanoreceptive and nociceptive C-afferents. Pain 79(2–3):113–119

    Article  CAS  PubMed  Google Scholar 

  • Woolf CJ (1993) The pathophysiology of peripheral neuropathic pain—abnormal peripheral input and abnormal central processing. Acta Neurochir Suppl (Wien) 58:125–130

    CAS  Google Scholar 

  • Zubieta JK et al (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293(5528):311–315

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Olausson M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liljencrantz, J., Pitcher, M., Bushnell, M.C., Olausson, H. (2016). Pain and Touch: Roles for C-Tactile Afferents in Pain Inhibition and Tactile Allodynia. In: Olausson, H., Wessberg, J., Morrison, I., McGlone, F. (eds) Affective Touch and the Neurophysiology of CT Afferents. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6418-5_24

Download citation

Publish with us

Policies and ethics