Skip to main content

Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors

  • Protocol
  • First Online:
Toll-Like Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1390))

Abstract

Toll-like receptors (TLRs) are expressed in B lymphocytes and contribute to B-cell activation, antibody responses, and their maturation. TLR stimulation of mouse B cells induces class switch DNA recombination (CSR) to isotypes specified by cytokines, and also induces formation of IgM+ as well as class-switched plasma cells. B-cell receptor (BCR) signaling, while on its own inducing limited B-cell proliferation and no CSR, can enhance CSR driven by TLRs. Particular synergistic or antagonistic interactions among TLR pathways, BCR, and cytokine signaling can have important consequences for B-cell activation, CSR, and plasma cell formation. This chapter outlines protocols for the induction and analysis of B-cell activation and antibody production by TLRs with or without other stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrel A, Ingebrigtsen R (1912) The production of antibodies by tissues living outside of the organism. J Exp Med 15:287–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Stevens KM, McKenna JM (1958) Studies on antibody synthesis initiated in vitro. J Exp Med 107:537–559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Moller G (1965) 19S antibody production against soluble lipopolysaccharide antigens by individual lymphoid cells in vitro. Nature 207:1166–1168

    Article  CAS  PubMed  Google Scholar 

  4. Moller G, Wigzell H (1965) Antibody synthesis at the cellular level. Antibody-induced suppression of 19s and 7s antibody response. J Exp Med 121:969–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Nossal GJ, Szenberg A, Ada GL, Austin CM (1964) Single cell studies on 19S antibody production. J Exp Med 119:485–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pike BL, Alderson MR, Nossal GJ (1987) T-independent activation of single B cells: an orderly analysis of overlapping stages in the activation pathway. Immunol Rev 99:119–152

    Article  CAS  PubMed  Google Scholar 

  7. Rudbach JA (1971) Molecular immunogenicity of bacterial lipopolysaccharide antigens: establishing a quantitative system. J Immunol 106:993–1001

    CAS  PubMed  Google Scholar 

  8. Von Eschen KB, Rudbach JA (1974) Immunological responses of mice to native protoplasmic polysaccharide and lipopolysaccharide: functional separation of the two signals required to stimulate a secondary antibody response. J Exp Med 140:1604–1614

    Article  Google Scholar 

  9. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  10. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  11. Coutinho A, Moller G (1975) Thymus-independent B-cell induction and paralysis. Adv Immunol 21:113–236

    Article  CAS  PubMed  Google Scholar 

  12. Coutinho A, Poltorack A (2003) Innate immunity: from lymphocyte mitogens to Toll-like receptors and back. Curr Opin Immunol 15:599–602

    Article  CAS  PubMed  Google Scholar 

  13. Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438:364–368

    Article  CAS  PubMed  Google Scholar 

  14. Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, Villinger F, Murthy N, Steel J, Jacob J, Hogan RJ, Garcia-Sastre A, Compans R, Pulendran B (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hou B, Saudan P, Ott G, Wheeler ML, Ji M, Kuzmich L, Lee LM, Coffman RL, Bachmann MF, DeFranco AL (2011) Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34:375–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Xu Z, Zan H, Pone EJ, Mai T, Casali P (2012) Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 12:517–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Koh YT, Scatizzi JC, Gahan JD, Lawson BR, Baccala R, Pollard KM, Beutler BA, Theofilopoulos AN, Kono DH (2013) Role of nucleic acid-sensing TLRs in diverse autoantibody specificities and anti-nuclear antibody-producing B cells. J Immunol 190:4982–4990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Stavnezer J, Guikema JE, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P (2010) Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol 30:1–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A (2012) Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol 12:282–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gururajan M, Jacob J, Pulendran B (2007) Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS One 2, e863

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jendholm J, Morgelin M, Perez Vidakovics ML, Carlsson M, Leffler H, Cardell LO, Riesbeck K (2009) Superantigen- and TLR-dependent activation of tonsillar B cells after receptor-mediated endocytosis. J Immunol 182:4713–4720

    Article  CAS  PubMed  Google Scholar 

  24. Souwer Y, Griekspoor A, Jorritsma T, de Wit J, Janssen H, Neefjes J, van Ham SM (2009) B cell receptor-mediated internalization of salmonella: a novel pathway for autonomous B cell activation and antibody production. J Immunol 182:7473–7481

    Article  CAS  PubMed  Google Scholar 

  25. Bekeredjian-Ding I, Jego G (2009) Toll-like receptors—sentries in the B-cell response. Immunology 128:311–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Casali P, Schettino EW (1996) Structure and function of natural antibodies. Curr Top Microbiol Immunol 210:167–179

    CAS  PubMed  Google Scholar 

  27. Meyer-Bahlburg A, Rawlings DJ (2008) B cell autonomous TLR signaling and autoimmunity. Autoimmun Rev 7:313–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233

    Article  CAS  PubMed  Google Scholar 

  29. Hwang IY, Park C, Harrison K, Kehrl JH (2009) TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones. J Exp Med 206:2641–2657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wu X, Tsai CY, Patam MB, Zan H, Chen JP, Lipkin SM, Casali P (2006) A role for the MutL mismatch repair Mlh3 protein in immunoglobulin class switch DNA recombination and somatic hypermutation. J Immunol 176:5426–5437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zan H, Zhang J, Al-Qahtani A, Pone EJ, White CA, Lee D, Yel L, Mai T, Casali P (2011) Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions. Mol Immunol 48:610–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pone EJ, Zhang J, Mai T, White CA, Li G, Sakakura JK, Patel PJ, Al-Qahtani A, Zan H, Xu Z, Casali P (2012) BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway. Nat Commun 3:767

    Article  PubMed Central  PubMed  Google Scholar 

  33. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan AS, Magee AS, Danielson ME, Weiss A, Vasilakos JP, Underhill DM (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472:471–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Snapper CM (2012) Mechanisms underlying in vivo polysaccharide-specific immunoglobulin responses to intact extracellular bacteria. Ann N Y Acad Sci 1253:92–101

    Article  CAS  PubMed  Google Scholar 

  35. Poovassery JS, Vanden Bush TJ, Bishop GA (2009) Antigen receptor signals rescue B cells from TLR tolerance. J Immunol 183:2974–2983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Barr TA, Brown S, Ryan G, Zhao J, Gray D (2007) TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells. Eur J Immunol 37:3040–3053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ghosh TK, Mickelson DJ, Solberg JC, Lipson KE, Inglefield JR, Alkan SS (2007) TLR-TLR cross talk in human PBMC resulting in synergistic and antagonistic regulation of type-1 and 2 interferons, IL-12 and TNF-alpha. Int Immunopharmacol 7:1111–1121

    Article  CAS  PubMed  Google Scholar 

  38. Liu N, Ohnishi N, Ni L, Akira S, Bacon KB (2003) CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat Immunol 4:687–693

    Article  CAS  PubMed  Google Scholar 

  39. Gursel I, Gursel M, Yamada H, Ishii KJ, Takeshita F, Klinman DM (2003) Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J Immunol 171:1393–1400

    Article  CAS  PubMed  Google Scholar 

  40. Miles K, Heaney J, Sibinska Z, Salter D, Savill J, Gray D, Gray M (2012) A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc Natl Acad Sci U S A 109:887–892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Heikenwalder M, Polymenidou M, Junt T, Sigurdson C, Wagner H, Akira S, Zinkernagel R, Aguzzi A (2004) Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med 10:187–192

    Article  CAS  PubMed  Google Scholar 

  42. Lee CC, Avalos AM, Ploegh HL (2012) Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol 12:168–179

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34:251–262

    Article  CAS  PubMed  Google Scholar 

  44. Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484

    Article  CAS  PubMed  Google Scholar 

  45. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237–9242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kracker S, Radbruch A (2004) Immunoglobulin class switching: in vitro induction and analysis. Methods Mol Biol 271:149–159

    CAS  PubMed  Google Scholar 

  47. Jumper MD, Nishioka Y, Davis LS, Lipsky PE, Meek K (1995) Regulation of human B cell function by recombinant CD40 ligand and other TNF-related ligands. J Immunol 155:2369–2378

    CAS  PubMed  Google Scholar 

  48. Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312:12–19

    Article  PubMed  Google Scholar 

  49. Wersto RP, Chrest FJ, Leary JF, Morris C, Stetler-Stevenson MA, Gabrielson E (2001) Doublet discrimination in DNA cell-cycle analysis. Cytometry 46:296–306

    Article  CAS  PubMed  Google Scholar 

  50. Lecoeur H, de Oliveira-Pinto LM, Gougeon ML (2002) Multiparametric flow cytometric analysis of biochemical and functional events associated with apoptosis and oncosis using the 7-aminoactinomycin D assay. J Immunol Methods 265:81–96

    Article  CAS  PubMed  Google Scholar 

  51. Kinoshita K, Harigai M, Fagarasan S, Muramatsu M, Honjo T (2001) A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. Proc Natl Acad Sci U S A 98:12620–12623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65:109–121

    Article  CAS  PubMed  Google Scholar 

  53. Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Teichmann LL, Schenten D, Medzhitov R, Kashgarian M, Shlomchik MJ (2013) Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity 38:528–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. McHeyzer-Williams LJ, McHeyzer-Williams MG (2004) Analysis of antigen-specific B-cell memory directly ex vivo. Methods Mol Biol 271:173–188

    CAS  PubMed  Google Scholar 

  56. Moody MA, Haynes BF (2008) Antigen-specific B cell detection reagents: use and quality control. Cytometry A 73:1086–1092

    Article  PubMed Central  PubMed  Google Scholar 

  57. Bernasconi NL, Onai N, Lanzavecchia A (2003) A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101:4500–4504

    Article  CAS  PubMed  Google Scholar 

  58. He B, Qiao X, Cerutti A (2004) CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 173:4479–4491

    Article  CAS  PubMed  Google Scholar 

  59. Avery DT, Bryant VL, Ma CS, de Waal Malefyt R, Tangye SG (2008) IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J Immunol 181:1767–1779

    Article  CAS  PubMed  Google Scholar 

  60. Kaminski DA, Stavnezer J (2007) Antibody class switching differs among SJL, C57BL/6 and 129 mice. Int Immunol 19:545–556

    Article  CAS  PubMed  Google Scholar 

  61. Martin RM, Brady JL, Lew AM (1998) The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Methods 212:187–192

    Article  CAS  PubMed  Google Scholar 

  62. Wesemann DR, Magee JM, Boboila C, Calado DP, Gallagher MP, Portuguese AJ, Manis JP, Zhou X, Recher M, Rajewsky K, Notarangelo LD, Alt FW (2011) Immature B cells preferentially switch to IgE with increased direct Smu to Sepsilon recombination. J Exp Med 208:2733–2746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Mond JJ, Brunswick M (2001) In vitro antibody production. Curr Protoc Mol Biol Chapter 11, Unit 11.13

    Google Scholar 

  64. Iscove NN, Melchers F (1978) Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharide-reactive B lymphocytes. J Exp Med 147:923–933

    Article  CAS  PubMed  Google Scholar 

  65. Fanger MW, Hart DA, Wells JV, Nisonoff A (1970) Enhancement by reducing agents of the transformation of human and rabbit peripheral lymphocytes. J Immunol 105:1043–1045

    CAS  PubMed  Google Scholar 

  66. Bevan MJ, Epstein R, Cohn M (1974) The effect of 2-mercaptoethanol on murine mixed lymphocyte cultures. J Exp Med 139:1025–1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ohmori H, Yamamoto I (1983) Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes. III. Serum-bound and oxidized 2-mercaptoethanol are available for the augmentation. Cell Immunol 79:186–196

    Article  CAS  PubMed  Google Scholar 

  68. Guikema JE, Schrader CE, Brodsky MH, Linehan EK, Richards A, El Falaky N, Li DH, Sluss HK, Szomolanyi-Tsuda E, Stavnezer J (2010) p53 represses class switch recombination to IgG2a through its antioxidant function. J Immunol 184:6177–6187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Metcalfe C, Cresswell P, Ciaccia L, Thomas B, Barclay AN (2011) Labile disulfide bonds are common at the leucocyte cell surface. Open Biol 1:110010

    Article  PubMed Central  PubMed  Google Scholar 

  70. Barcellos-Hoff MH (2005) How tissues respond to damage at the cellular level: orchestration by transforming growth factor-β (TGF-β). BJR Suppl 27:123–127

    Article  Google Scholar 

  71. Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2:2049–2056

    Article  CAS  PubMed  Google Scholar 

  72. Snapper CM, Mond JJ (1996) A model for induction of T cell-independent humoral immunity in response to polysaccharide antigens. J Immunol 157:2229–2233

    CAS  PubMed  Google Scholar 

  73. Lim SY, Raftery MJ, Geczy CL (2011) Oxidative modifications of DAMPs suppress inflammation: the case for S100A8 and S100A9. Antioxid Redox Signal 15:2235–2248

    Article  CAS  PubMed  Google Scholar 

  74. van Eden W, Spiering R, Broere F, van der Zee R (2012) A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress Chaperones 17:281–292

    Article  PubMed Central  PubMed  Google Scholar 

  75. Rush JS, Hodgkin PD (2001) B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur J Immunol 31:1150–1159

    Article  CAS  PubMed  Google Scholar 

  76. Donahue AC, Fruman DA (2003) Proliferation and survival of activated B cells requires sustained antigen receptor engagement and phosphoinositide 3-kinase activation. J Immunol 170:5851–5860

    Article  CAS  PubMed  Google Scholar 

  77. Holmes K, Lantz LM, Fowlkes BJ, Schmid I, Giorgi JV (2001) Preparation of cells and reagents for flow cytometry. Curr Protoc Immunol Chapter 5, Unit 5.3

    Google Scholar 

  78. Stewart CC, Stewart SJ (2001) Titering antibodies. Curr Protoc Cytom Chapter 4, Unit 4.1

    Google Scholar 

  79. Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD (2007) Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat Protoc 2:2057–2067

    Article  CAS  PubMed  Google Scholar 

  80. Emslie D, D’Costa K, Hasbold J, Metcalf D, Takatsu K, Hodgkin PO, Corcoran LM (2008) Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor alpha chain expression on activated B cells. J Exp Med 205:409–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B, Mostarac M, Muehlinghaus G, Szyska M, Radbruch A, Manz RA (2003) Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol 171:1684–1690

    Article  CAS  PubMed  Google Scholar 

  82. Modigliani Y, Demengeot J, Vasconcellos R, Andersson J, Coutinho A, Grandien A (1997) Differential sensitivity of B lymphocyte populations to IgM receptor ligation is determined by local factors. Int Immunol 9:755–762

    Article  CAS  PubMed  Google Scholar 

  83. Rui L, Healy JI, Blasioli J, Goodnow CC (2006) ERK signaling is a molecular switch integrating opposing inputs from B cell receptor and T cell cytokines to control TLR4-driven plasma cell differentiation. J Immunol 177:5337–5346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egest J. Pone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pone, E.J. (2016). Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors. In: McCoy, C. (eds) Toll-Like Receptors. Methods in Molecular Biology, vol 1390. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3335-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3335-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3333-4

  • Online ISBN: 978-1-4939-3335-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics