Skip to main content

Ultrasonic Imaging of the Thyroid Gland

  • Chapter
  • First Online:
  • 232 Accesses

Abstract

Since the introduction in the 1970s of ultrasonography (US) for diagnostic and therapeutic purposes in clinical thyroidology, US has become widely accepted, increasingly employed, and mastered not only by specialist in diagnostic imaging. It is recommended by the thyroid specialist societies as the initial imaging method for individuals with thyroid disorders, especially when there is suspicion of thyroid malignancy. The technology is increasingly mastered by physicians who are in charge of such patients, whether for the initial workup or for follow-up. This chapter focuses, in detail, on basic aspects of B-mode US, as well as color- and power Doppler US, and discusses elastosonography. Strengths and weaknesses of these modalities are covered and characteristic findings are highlighted pictorially. Much emphasis is on the technique of US-guided fine-needle aspiration as a diagnostic tool, since this is also the prerequisite for the increasing use of US-guided therapy and the decrease in diagnostic thyroidectomies. The use of percutaneous ethanol injection (PEI) therapy, interstitial laser photocoagulation (ILP), and radiofrequency ablation (RFA) is covered, although their use in thyroid malignancy is still in its infancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Gray-scale resolution is the maximum number of gray shades available in a system, broken into steps from white to black.

  2. 2.

    Temporal resolution is the number of times per second the ultrasound system scans. This is displayed as frames per second.

  3. 3.

    Axial resolution defines the ability of the ultrasound transducer to detect two closely spaced reflectors along the direction of sound travel and is directly proportional to the pulse length. The distribution of frequencies present in a beam varies with pulse length: the frequency distribution broadens as the pulse gets shorter. The axial resolution of the imaging system depends on the pulse length: the shorter the pulse length, the better the axial resolution. Short pulses have the broadest frequency distribution but the best axial resolution.

  4. 4.

    Lateral resolution defines the ability of the ultrasound transducer to discern two points perpendicular to the direction of propagation.

  5. 5.

    Contrast resolution defines the ability to discriminate the differences of acoustic impedance among tissues. It is affected by echo amplitude and tissue attenuation.

  6. 6.

    Vascular resolution describes sensitivity for the detection of very low Doppler signal intensities and Doppler frequency shifts.

References

  1. Foley WD. Physical principles and instrumentation. In: Foley WD, editor. Color Doppler flow imaging. Boston: Andover Medical Publishers; 1991. p. 3–13.

    Google Scholar 

  2. Zagzebski J. Essentials of ultrasound physics. St Louis: Mosby; 1996.

    Google Scholar 

  3. Kremkau FW. Diagnostic ultrasound. Philadelphia: Saunders; 1998.

    Google Scholar 

  4. Goldstein A, Powis RL. Medical ultrasonic diagnostics. Phys Acoust. 1999;23:43–191.

    Google Scholar 

  5. Carson P. Ultrasound tissue interactions. In: Goldman L, Fowlkes J, editors. Categorical course in diagnostic radiology physics: CT and US cross-sectional imaging. Oak Brook: Radiological Society of North America; 2000. p. 9–20.

    Google Scholar 

  6. Bushberg J, Seibert J, Leidholdt E, Boone J. The essential physics of medical imaging. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 469–553.

    Google Scholar 

  7. Thomenius K. Instrumentation for B-mode imaging. In: Goldman LW, Fowlles JB, editors. Categorical course in diagnostic radiology physics: CT and US cross-sectional imaging. Oak Brook: Radiological Society of North America; 2000. p. 21–32.

    Google Scholar 

  8. Jespersen SK, Wilhjelm JE, Sillesen H. Multi-angle compound imaging. Ultrason Imaging. 1998;20(2):81–102.

    Article  CAS  PubMed  Google Scholar 

  9. Burns PN. The physical principles of Doppler and spectral analysis. J Clin Ultrasound. 1987;15(9):567–90.

    Article  CAS  PubMed  Google Scholar 

  10. Nelson TR, Pretorius DH. The Doppler signal: where does it come from and what does it mean? AJR Am J Roentgenol. 1988;151(3):439–47.

    Article  CAS  PubMed  Google Scholar 

  11. Rubin JM, Bude RO, Carson PL, Bree RL, Adler RS. Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. Radiology. 1994;190(3):853–6.

    Article  CAS  PubMed  Google Scholar 

  12. Stavros AT, Rapp CL, Thickman D. Sonography of inflammatory condition. Ultrasound Q. 1995;13:1–26.

    Article  Google Scholar 

  13. Bude RO, Rubin JM. Power Doppler sonography. Radiology. 1996;200(1):21–3.

    Article  CAS  PubMed  Google Scholar 

  14. Raza S, Baum JK. Solid breast lesions: evaluation with power Doppler US. Radiology. 1997;203(1):164–8.

    Article  CAS  PubMed  Google Scholar 

  15. Holland SK, Orphanoudakis SC, Jaffe CC. Frequency-dependent attenuation effects in pulsed Doppler ultrasound: experimental results. IEEE Trans Biomed Eng. 1984;31(9):626–31.

    Article  CAS  PubMed  Google Scholar 

  16. Rizzatto G. Ultrasound transducers. Eur J Radiol. 1998;27 Suppl 2:S188–95.

    Article  PubMed  Google Scholar 

  17. Hegedus L, Bonnema SJ, Bennedbaek FN. Management of simple nodular goiter: current status and future perspectives. Endocr Rev. 2003;24(1):102–32.

    Article  PubMed  Google Scholar 

  18. Hegedus L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351(17):1764–71.

    Article  PubMed  Google Scholar 

  19. Hegedus L. Therapy: a new nonsurgical therapy option for benign thyroid nodules? Nat Rev Endocrinol. 2009;5(9):476–8.

    Article  PubMed  Google Scholar 

  20. Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. J Endocrinol Invest. 2010;33(5 Suppl):1–50.

    CAS  PubMed  Google Scholar 

  21. Gharib H, Papini E. Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin North Am. 2007;36(3):707–35, vi.

    Article  CAS  PubMed  Google Scholar 

  22. American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26:1–133.

    Google Scholar 

  23. Paschke R, Hegedus L, Alexander E, Valcavi R, Papini E, Gharib H. Thyroid nodule guidelines: agreement, disagreement and need for future research. Nat Rev Endocrinol. 2011;7(6):354–61.

    Article  PubMed  Google Scholar 

  24. Solbiati L, Osti V, Cova L, Tonolini M. Ultrasound of thyroid, parathyroid glands and neck lymph nodes. Eur Radiol. 2001;11(12):2411–24.

    Article  CAS  PubMed  Google Scholar 

  25. Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–9.

    Article  PubMed  Google Scholar 

  26. Moon WJ, Jung SL, Lee JH, et al. Benign and malignant thyroid nodules: US differentiation – multicenter retrospective study. Radiology. 2008;247(3):762–70.

    Article  PubMed  Google Scholar 

  27. Frates MC, Benson CB, Charboneau JW, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology. 2005;237(3):794–800.

    Article  PubMed  Google Scholar 

  28. Hatabu H, Kasagi K, Yamamoto K, et al. Cystic papillary carcinoma of the thyroid gland: a new sonographic sign. Clin Radiol. 1991;43(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  29. Watters DA, Ahuja AT, Evans RM, et al. Role of ultrasound in the management of thyroid nodules. Am J Surg. 1992;164(6):654–7.

    Article  CAS  PubMed  Google Scholar 

  30. Chan BK, Desser TS, McDougall IR, Weigel RJ, Jeffrey Jr RB. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med. 2003;22(10):1083–90.

    PubMed  Google Scholar 

  31. Hoang JK, Lee WK, Lee M, Johnson D, Farrell S. US features of thyroid malignancy: pearls and pitfalls. Radiographics. 2007;27(3):847–60; discussion 861–845.

    Article  PubMed  Google Scholar 

  32. Kim EK, Park CS, Chung WY, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol. 2002;178(3):687–91.

    Article  PubMed  Google Scholar 

  33. Papini E, Guglielmi R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 2002;87(5):1941–6.

    Article  CAS  PubMed  Google Scholar 

  34. Yoon DY, Lee JW, Chang SK, et al. Peripheral calcification in thyroid nodules: ultrasonographic features and prediction of malignancy. J Ultrasound Med. 2007;26(10):1349–55; quiz 1356–1347.

    PubMed  Google Scholar 

  35. Khoo ML, Asa SL, Witterick IJ, Freeman JL. Thyroid calcification and its association with thyroid carcinoma. Head Neck. 2002;24(7):651–5.

    Article  PubMed  Google Scholar 

  36. Peccin S, de Castsro JA, Furlanetto TW, Furtado AP, Brasil BA, Czepielewski MA. Ultrasonography: is it useful in the diagnosis of cancer in thyroid nodules? J Endocrinol Invest. 2002;25(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  37. Kim BM, Kim MJ, Kim EK, et al. Sonographic differentiation of thyroid nodules with eggshell calcifications. J Ultrasound Med. 2008;27(10):1425–30.

    PubMed  Google Scholar 

  38. Martinoli C, Pretolesi F, Crespi G, et al. Power Doppler sonography: clinical applications. Eur J Radiol. 1998;27 Suppl 2:S133–40.

    Article  PubMed  Google Scholar 

  39. Frates MC, Benson CB, Doubilet PM, Cibas ES, Marqusee E. Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules? J Ultrasound Med. 2003;22(2):127–31; quiz 132–124.

    PubMed  Google Scholar 

  40. Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. J Endocrinol Invest. 2010;33(5 Suppl):51–6.

    CAS  PubMed  Google Scholar 

  41. Nam-Goong IS, Kim HY, Gong G, et al. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf). 2004;60(1):21–8.

    Article  Google Scholar 

  42. Alexander EK, Marqusee E, Orcutt J, et al. Thyroid nodule shape and prediction of malignancy. Thyroid. 2004;14(11):953–8.

    Article  PubMed  Google Scholar 

  43. Wienke JR, Chong WK, Fielding JR, Zou KH, Mittelstaedt CA. Sonographic features of benign thyroid nodules: interobserver reliability and overlap with malignancy. J Ultrasound Med. 2003;22(10):1027–31.

    PubMed  Google Scholar 

  44. Lee YH, Kim DW, In HS, et al. Differentiation between benign and malignant solid thyroid nodules using an US classification system. Korean J Radiol. 2011;12(5):559–67.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leenhardt L, Hejblum G, Franc B, et al. Indications and limits of ultrasound-guided cytology in the management of nonpalpable thyroid nodules. J Clin Endocrinol Metab. 1999;84(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  46. Reading CC, Charboneau JW, Hay ID, Sebo TJ. Sonography of thyroid nodules: a “classic pattern” diagnostic approach. Ultrasound Q. 2005;21(3):157–65.

    Article  PubMed  Google Scholar 

  47. Tamsel S, Demirpolat G, Erdogan M, et al. Power Doppler US patterns of vascularity and spectral Doppler US parameters in predicting malignancy in thyroid nodules. Clin Radiol. 2007;62(3):245–51.

    Article  CAS  PubMed  Google Scholar 

  48. Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology. 2010;255(1):260–9.

    Article  PubMed  Google Scholar 

  49. Lacout A, Marcy PY, Thariat J. RE: role of Duplex Doppler US for thyroid nodules: looking for the “sword” sign. Korean J Radiol. 2011;12(3):400–1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alexander EK, Hurwitz S, Heering JP, et al. Natural history of benign solid and cystic thyroid nodules. Ann Intern Med. 2003;138(4):315–8.

    Article  PubMed  Google Scholar 

  51. Lyshchik A, Higashi T, Asato R, et al. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237(1):202–11.

    Article  PubMed  Google Scholar 

  52. Hegedus L. Can elastography stretch our understanding of thyroid histomorphology? J Clin Endocrinol Metab. 2010;95(12):5213–5.

    Article  CAS  PubMed  Google Scholar 

  53. Duick S, Mandel S. Ultrasound-guided aspiration of thyroid nodules. In: Baskin JH, Duick DS, Levine RA, editors. Thyroid ultrasound and ultrasound-guided FNA. 2nd ed. New York: Springer Science; 2008. p. 97–110.

    Chapter  Google Scholar 

  54. Gao J, Kazam JK, Kazam E. Imaging and biopsy guidance in the perioperative management of thyroid carcinoma. In: Carpi A, Mechanick JI, editors. Thyroid cancer: from emergent biotechnologies to clinical practice guidelines. New York: CRC Press; 2011. p. 117–32.

    Chapter  Google Scholar 

  55. Gobien RP. Aspiration biopsy of the solitary thyroid nodule. Radiol Clin North Am. 1979;17(3):543–54.

    CAS  PubMed  Google Scholar 

  56. Gharib H. Diagnosis of thyroid nodules by fine-needle aspiration biopsy. Curr Opin Endocrinol Diabetes. 1996;3:433–8.

    Article  Google Scholar 

  57. Silverman JF, West RL, Finley JL, et al. Fine-needle aspiration versus large-needle biopsy or cutting biopsy in evaluation of thyroid nodules. Diagn Cytopathol. 1986;2(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  58. Screaton NJ, Berman LH, Grant JW. US-guided core-needle biopsy of the thyroid gland. Radiology. 2003;226(3):827–32.

    Article  PubMed  Google Scholar 

  59. Zhang S, Ivanovic M, Nemecek AA, De Frias DVS, Lucas E, Nayar R. Thin core needle biopsy crush preparation in conjunction with fine-needle aspiration for the evaluation of thyroid nodules. A complementary approach. Cancer Cytopathol. 2008;114:512–8.

    Article  Google Scholar 

  60. Park KT, Ahn SH, Mo JH, et al. Role of core needle biopsy and ultrasonographic finding in management of indeterminate thyroid nodules. Head Neck. 2011;33(2):160–5.

    Article  PubMed  Google Scholar 

  61. Papini E, Bianchini A, Guglielmi R, et al. Image-guided mini-invasive ablation of thyroid tumors and distant metastases. In: Carpi A, Mechanick JI, editors. Thyroid cancer: from emergent biotechnologies to clinical practice guidelines. New York: CRC Press; 2011. p. 213–30.

    Chapter  Google Scholar 

  62. Livraghi T, Giorgio A, Marin G, et al. Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology. 1995;197(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  63. Solbiati L, Giangrande A, De Pra L, Bellotti E, Cantu P, Ravetto C. Percutaneous ethanol injection of parathyroid tumors under US guidance: treatment for secondary hyperparathyroidism. Radiology. 1985;155(3):607–10.

    Article  CAS  PubMed  Google Scholar 

  64. Charbonneau JW, Hay ID, van Heerden JA. Persistent primary hyperparathyroidism: successful ultrasound-guided percutaneous ethanol ablation of an occult adenoma. Mayo Clin Proc. 1988;63:913–7.

    Article  Google Scholar 

  65. Karstrup S, Holm HH, Glenthoj A, Hegedus L. Nonsurgical treatment of primary hyperparathyroidism with sonographically guided percutaneous injection of ethanol: results in a selected series of patients. AJR Am J Roentgenol. 1990;154(5):1087–90.

    Article  CAS  PubMed  Google Scholar 

  66. Livraghi T, Paracchi A, Ferrari C, et al. Treatment of autonomous thyroid nodules with percutaneous ethanol injection: preliminary results. Work in progress. Radiology. 1990;175(3):827–9.

    Article  CAS  PubMed  Google Scholar 

  67. Bennedbaek FN, Nielsen LK, Hegedus L. Effect of percutaneous ethanol injection therapy versus suppressive doses of L-thyroxine on benign solitary solid cold thyroid nodules: a randomized trial. J Clin Endocrinol Metab. 1998;83(3):830–5.

    Article  CAS  PubMed  Google Scholar 

  68. Bennedbaek FN, Karstrup S, Hegedus L. Percutaneous ethanol injection therapy in the treatment of thyroid and parathyroid diseases. Eur J Endocrinol. 1997;136(3):240–50.

    Article  CAS  PubMed  Google Scholar 

  69. Papini E, Pacella C. Percutaneous ethanol injection of benign thyroid nodules and cysts using ultrasound. In: Baskin HJ, editor. Thyroid ultrasound and ultrasound-guided FNA biopsy. 1st ed. Boston: Kluwer Academic Publishers; 2000. p. 169–213.

    Chapter  Google Scholar 

  70. Valcavi R, Frasoldati A. Ultrasound-guided percutaneous ethanol injection therapy in thyroid cystic nodules. Endocr Pract. 2004;10(3):269–75.

    Article  PubMed  Google Scholar 

  71. Guglielmi R, Pacella CM, Bianchini A, et al. Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy. Thyroid. 2004;14(2):125–31.

    Article  CAS  PubMed  Google Scholar 

  72. Goletti O, Lenziardi M, De Negri F, et al. Inoperable thyroid carcinoma: palliation with percutaneous injection of ethanol. Eur J Surg. 1993;159(11–12):639–41.

    CAS  PubMed  Google Scholar 

  73. Hay ID, Charboneau JW. The coming of age of ultrasound-guided percutaneous ethanol ablation of selected neck nodal metastases in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2011;96(9):2717–20.

    Article  CAS  PubMed  Google Scholar 

  74. Lewis BD, Hay ID, Charboneau JW, McIver B, Reading CC, Goellner JR. Percutaneous ethanol injection for treatment of cervical lymph node metastases in patients with papillary thyroid carcinoma. AJR Am J Roentgenol. 2002;178(3):699–704.

    Article  CAS  PubMed  Google Scholar 

  75. Hay ID, Charbonneau JW, Lewis BD, et al. Successful ultrasound-guided percutaneous ethanol ablation of neck metastases in 20 patients with postoperative TNM stage I papillary thyroid carcinoma resistant to conventional therapy. (abstract). In: 74th Meeting ATA. Los Angeles; 2002. p. 176.

    Google Scholar 

  76. Monchik JM, Donatini G, Iannuccilli J, Dupuy DE. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg. 2006;244(2):296–304.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lim CY, Yun JS, Lee J, Nam KH, Chung WY, Park CS. Percutaneous ethanol injection therapy for locally recurrent papillary thyroid carcinoma. Thyroid. 2007;17(4):347–50.

    Article  CAS  PubMed  Google Scholar 

  78. Kim BM, Kim MJ, Kim EK, Park SI, Park CS, Chung WY. Controlling recurrent papillary thyroid carcinoma in the neck by ultrasonography-guided percutaneous ethanol injection. Eur Radiol. 2008;18(4):835–42.

    Article  PubMed  Google Scholar 

  79. Heilo A, Sigstad E, Fagerlid KH, et al. Efficacy of ultrasound-guided percutaneous ethanol injection treatment in patients with a limited number of metastatic cervical lymph nodes from papillary thyroid carcinoma. J Clin Endocrinol Metab. 2011;96(9):2750–5.

    Article  CAS  PubMed  Google Scholar 

  80. Tranberg KG. Percutaneous ablation of liver tumours. Best Pract Res Clin Gastroenterol. 2004;18(1):125–45.

    Article  PubMed  Google Scholar 

  81. Lencioni R. Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010;52(2):762–73.

    Article  CAS  PubMed  Google Scholar 

  82. Dupuy DE, Monchik JM, Decrea C, Pisharodi L. Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery. 2001;130(6):971–7.

    Article  CAS  PubMed  Google Scholar 

  83. Pacella CM, Bizzarri G, Francica G, et al. Percutaneous laser ablation in the treatment of hepatocellular carcinoma with small tumors: analysis of factors affecting the achievement of tumor necrosis. J Vasc Interv Radiol. 2005;16(11):1447–57.

    Article  PubMed  Google Scholar 

  84. Gough-Palmer AL, Gedroyc WM. Laser ablation of hepatocellular carcinoma – a review. World J Gastroenterol. 2008;14(47):7170–4.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Walser EM. Percutaneous laser ablation in the treatment of hepatocellular carcinoma with a tumor size of 4 cm or smaller: analysis of factors affecting the achievement of tumor necrosis. J Vasc Interv Radiol. 2005;16(11):1427–9.

    Article  PubMed  Google Scholar 

  86. Pacella CM, Francica G, Di Lascio FM, et al. Long-term outcome of cirrhotic patients with early hepatocellular carcinoma treated with ultrasound-guided percutaneous laser ablation: a retrospective analysis. J Clin Oncol. 2009;27(16):2615–21.

    Article  PubMed  Google Scholar 

  87. Vogl TJ, Eichler K, Straub R, et al. Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s) – side effects, complications and results. Eur J Ultrasound. 2001;13(2):117–27.

    Article  CAS  PubMed  Google Scholar 

  88. Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38(1):79–100.

    Article  PubMed  Google Scholar 

  89. Ahrar K, Gowda A, Javadi S, et al. Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model. J Vasc Interv Radiol. 2010;21(4):555–61.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pacella CM, Bizzarri G, Spiezia S, et al. Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology. 2004;232(1):272–80.

    Article  PubMed  Google Scholar 

  91. Cakir B, Topaloglu O, Gul K, et al. Ultrasound-guided percutaneous laser ablation treatment in inoperable aggressive course anaplastic thyroid carcinoma: the introduction of a novel alternative palliative therapy – second experience in the literature. J Endocrinol Invest. 2007;30(7):624–5.

    Article  CAS  PubMed  Google Scholar 

  92. Papini E, Guglielmi R, Hosseim G, et al. Ultrasound-guided laser ablation of incidental papillary thyroid microcarcinoma: a potential therapeutic approach in patients at surgical risk. Thyroid. 2011;21(8):917–20.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Solbiati L, Cova L, Ierace T, Pacella CM, Baroli A, Lomuscio G. Percutaneous US-guided interstitial laser ablation of new metastatic lymph nodes in the neck from papillary thyroid carcinoma following thyroidectomy and lymphadenectomy (abstract). In: RSNA, (ed.) 97th Scientific assembly and annual meeting. Chicago; 2011.

    Google Scholar 

  94. Ritz JP, Lehmann KS, Zurbuchen U, et al. Ex vivo and in vivo evaluation of laser-induced thermotherapy for nodular thyroid disease. Lasers Surg Med. 2009;41(7):479–86.

    Article  PubMed  Google Scholar 

  95. Pacella CM, Bizzarri G, Bianchini A, Guglielmi R, Pacella S, Papini E. US-guided laser thermal ablation of benign and malignant thyroid lesions (abstract). In: RSNA, (ed.) 84th scientific assembly and annual meeting November 30–December 5. Chicago; 2003. p. 1974.

    Google Scholar 

  96. Papini E, Bizzarri G, Bianchini A, et al. Contrast-enhanced ultrasound in the management of thyroid nodules. In: Baskin HJ, Duick DS, Levine RA, editors. Thyroid ultrasound and ultrasound-guided FNA. New York: Springer; 2008. p. 151–71.

    Chapter  Google Scholar 

  97. Baek JH, Kim YS, Lee D, Huh JY, Lee JH. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. AJR Am J Roentgenol. 2010;194(4):1137–42.

    Article  PubMed  Google Scholar 

  98. Pacella CM, Bizzarri G, Guglielmi R, et al. Thyroid tissue: US-guided percutaneous interstitial laser ablation-a feasibility study. Radiology. 2000;217(3):673–7.

    Article  CAS  PubMed  Google Scholar 

  99. Dossing H, Bennedbaek FN, Hegedus L. Ultrasound-guided interstitial laser photocoagulation of an autonomous thyroid nodule: the introduction of a novel alternative. Thyroid. 2003;13(9):885–8.

    Article  PubMed  Google Scholar 

  100. Dossing H, Bennedbaek FN, Hegedus L. Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules – a randomised study. Eur J Endocrinol. 2005;152(3):341–5.

    Article  CAS  PubMed  Google Scholar 

  101. Papini E, Guglielmi R, Bizzarri G, et al. Treatment of benign cold thyroid nodules: a randomized clinical trial of percutaneous laser ablation versus levothyroxine therapy or follow-up. Thyroid. 2007;17(3):229–35.

    Article  CAS  PubMed  Google Scholar 

  102. Dossing H, Bennedbaek FN, Hegedus L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol. 2011;165(1):123–8.

    Article  PubMed  CAS  Google Scholar 

  103. Esnault O, Franc B, Menegaux F, et al. High-intensity focused ultrasound ablation of thyroid nodules: first human feasibility study. Thyroid. 2011;21(9):965–73.

    Article  PubMed  Google Scholar 

  104. Kovatcheva RD, Vlahov JD, Shinkov AD, et al. High-intensity focused ultrasound to treat primary hyperparathyroidism: a feasibility study in four patients. AJR Am J Roentgenol. 2010;195(4):830–5.

    Article  PubMed  Google Scholar 

  105. Lerner RM, Huang SR, Parker KJ. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231–9.

    Article  CAS  PubMed  Google Scholar 

  106. Konofagou EE. Quo vadis elasticity imaging? Ultrasonics. 2004;42(1–9):331–6.

    Article  CAS  PubMed  Google Scholar 

  107. Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341–50.

    Article  PubMed  Google Scholar 

  108. Lyshchik A, Higashi T, Asato R, et al. Elastic moduli of thyroid tissues under compression. Ultrason Imaging. 2005;27(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  109. Levine RA. Ultrasound elastography of the thyroid. In: Baskin J, Duick D, Levine R, editors. Thyroid ultrasound and ultrasound-guided FNA. 2nd ed. New York: Springer Science; 2008. p. 237–43.

    Chapter  Google Scholar 

  110. Bae U, Dighe M, Dubinsky T, Minoshima S, Shamdasani V, Kim Y. Ultrasound thyroid elastography using carotid artery pulsation: preliminary study. J Ultrasound Med. 2007;26(6):797–805.

    PubMed  Google Scholar 

  111. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22.

    Article  CAS  PubMed  Google Scholar 

  112. Lyshchik A, Higashi T, Asato R, et al. Cervical lymph node metastases: diagnosis at sonoelastography – initial experience. Radiology. 2007;243(1):258–67.

    Article  PubMed  Google Scholar 

  113. Wilson SR, Burns PN. Microbubble contrast for radiological imaging: 2. Applications. Ultrasound Q. 2006;22(1):15–8.

    PubMed  Google Scholar 

  114. Huang-Wei C, Bleuzen A, Bourlier P, et al. Differential diagnosis of focal nodular hyperplasia with quantitative parametric analysis in contrast-enhanced sonography. Invest Radiol. 2006;41(3):363–8.

    Article  PubMed  Google Scholar 

  115. Spiezia S, Farina R, Cerbone G, et al. Analysis of color Doppler signal intensity variation after levovist injection: a new approach to the diagnosis of thyroid nodules. J Ultrasound Med. 2001;20(3):223–31; quiz 233.

    CAS  PubMed  Google Scholar 

  116. Bartolotta TV, Midiri M, Galia M, et al. Qualitative and quantitative evaluation of solitary thyroid nodules with contrast-enhanced ultrasound: initial results. Eur Radiol. 2006;16(10):2234–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Hegedüs MD, DMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papini, E., Pacella, C.M., Frasoldati, A., Hegedüs, L. (2016). Ultrasonic Imaging of the Thyroid Gland. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics