Skip to main content

Gel Immobilization of Acrylamide-Modified Single-Stranded DNA Template for Pyrosequencing

  • Protocol
  • First Online:
Advances and Clinical Practice in Pyrosequencing

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 666 Accesses

Abstract

A novel two-step process was developed to prepare ssDNA templates for pyrosequencing. First, PCR-amplified DNA templates modified with an acrylamide group and acrylamide monomers were copolymerized in 0.1 M NaOH solution to form polyacrylamide gel spots. Second, ssDNA templates for pyrosequencing were prepared by removing electrophoretically unbound complementary strands, unmodified PCR primers, inorganic pyrophosphate (PPi), and excess deoxyribonucleotides under alkali conditions. The results show that the 3-D polyacrylamide gel network has a high immobilization capacity and the modified PCR fragments are efficiently captured. After electrophoresis, gel spots copolymerized from 10 μL of the crude PCR products and the acrylamide monomers contain template molecules on the order of pmol, which generate enough light to be detected by a regular photomultiplier tube. The porous structure of gel spots facilitated the fast transportation of the enzyme, dNTPs, and other reagents, and the solution-mimicking microenvironment guaranteed polymerase efficiency for pyrosequencing. Successful genotyping from the crude PCR products was demonstrated. This method can be applied in any laboratory; it is cheap, fast, and simple, and has the potential to be incorporated into a DNA-chip format for high-throughput pyrosequencing analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  CAS  PubMed  Google Scholar 

  2. Nyren P, Karamohamed S, Ronaghi M (1997) Detection of single-base changes using a bioluminometric primer extension assay. Anal Biochem 244:367–373

    Article  CAS  PubMed  Google Scholar 

  3. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    Article  CAS  PubMed  Google Scholar 

  4. Nyren P (1994) Apyrase immobilized on paramagnetic beads used to improve detection limits in bioluminometric ATP monitoring. J Biolumin Chemilumin 9:29–34

    Article  CAS  PubMed  Google Scholar 

  5. Alderborn A, Kristofferson A, Hammerling U (2000) Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res 10:1249–1258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nourizad N, Gharizadeh B, Nyren P (2003) Method for clone checking. Electrophoresis 24:1712–1715

    Article  CAS  PubMed  Google Scholar 

  7. Gharizadeh B, Ohlin A, Molling P, Backman A et al (2003) Multiple group-specific sequencing primers for reliable and rapid DNA sequencing. Mol Cell Probes 17:203–210

    Article  CAS  PubMed  Google Scholar 

  8. Margulies M, Egholm M, Altman WE, Attiya S et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Nordstrom T, Nourizad K, Ronaghi M, Nyren P (2000) Method enabling pyrosequencing on double-stranded DNA. Anal Biochem 282:186–193

    Article  CAS  PubMed  Google Scholar 

  10. Pacey-Miller T, Henry R (2003) Single-nucleotide polymorphism detection in plants using a single-stranded pyrosequencing protocol with a universal biotinylated primer. Anal Biochem 317:166–170

    Article  PubMed  Google Scholar 

  11. Russom A, Tooke N, Andersson H, Stemme G (2003) Single nucleotide polymorphism analysis by allele-specific primer extension with real-time bioluminescence detection in a microfluidic device. J Chromatogr A 1014:37–45

    Article  CAS  PubMed  Google Scholar 

  12. Pettersson M, Bylund M, Alderborn A (2003) Molecular haplotype determination using allele-specific PCR and pyrosequencing technology. Genomics 82:390–396

    Article  CAS  PubMed  Google Scholar 

  13. Verri A, Focher F, Tettamanti G, Grazioli V (2005) Two-step genetic screening of thrombophilia by pyrosequencing. Clin Chem 51:1282–1284

    Article  CAS  PubMed  Google Scholar 

  14. Palmieri O, Toth S, Ferraris A, Andriulli A et al (2003) CARD15 genotyping in inflammatory bowel disease patients by multiplex pyrosequencing. Clin Chem 49:1675–1679

    Article  CAS  PubMed  Google Scholar 

  15. Syed AA, Irving JA, Redfern CP, Hall AG et al (2004) Low prevalence of the N363S polymorphism of the glucocorticoid receptor in South Asians living in the United Kingdom. J Clin Endocrinol Metab 89:232–235

    Article  CAS  PubMed  Google Scholar 

  16. Sinclair A, Arnold C, Woodford N (2003) Rapid detection and estimation by pyrosequencing of 23S rRNA genes with a single nucleotide polymorphism conferring linezolid resistance in Enterococci. Antimicrob Agents Chemother 47:3620–3622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Holmberg K, Persson ML, Uhlen M, Odeberg J (2005) Pyrosequencing analysis of thrombosis-associated risk markers. Clin Chem 51:1549–1552

    Article  CAS  PubMed  Google Scholar 

  18. Holmberg A, Blomstergren A, Nord O, Lukacs M et al (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26:501–510

    Article  CAS  PubMed  Google Scholar 

  19. Ji M, Hou P, Li S, He N, Lu Z (2004) Microarray-based method for genotyping of functional single nucleotide polymorphisms using dual-color fluorescence hybridization. Mutat Res 548:97–105

    Article  CAS  PubMed  Google Scholar 

  20. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Li J, Liu H, Liu Q et al (2002) Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Res 30, e61

    Article  PubMed Central  PubMed  Google Scholar 

  22. Afanassiev V, Hanemann V, Wolfl S (2000) Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucleic Acids Res 28, E66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wang Y, Wang H, Gao L, Liu H et al (2005) Polyacrylamide gel film immobilized molecular beacon array for single nucleotide mismatch detection. J Nanosci Nanotechnol 5:653–658

    Article  CAS  PubMed  Google Scholar 

  24. Rubina AY, Pan’kov SV, Dementieva EI, Pen’kov DN et al (2004) Hydrogel drop microchips with immobilized DNA: properties and methods for large-scale production. Anal Biochem 325:92–106

    Article  CAS  PubMed  Google Scholar 

  25. Rehman FN, Audeh M, Abrams ES, Hammond PW et al (1999) Immobilization of acrylamide-modified oligonucleotides by co-polymerization. Nucleic Acids Res 27:649–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Xiao PF, Cheng L, Wan Y, Sun BL et al (2006) An improved gel-based DNA microarray method for detecting single nucleotide mismatch. Electrophoresis 27:3904–3915

    Article  CAS  PubMed  Google Scholar 

  27. Dunker J, Larsson U, Petersson D, Forsell J et al (2003) Parallel DNA template preparation using a vacuum filtration sample transfer device. Biotechniques 34(862–866):868

    Google Scholar 

  28. Zhou G, Kamahori M, Okano K, Harada K, Kambara H (2001) Miniaturized pyrosequencer for DNA analysis with capillaries to deliver deoxynucleotides. Electrophoresis 22:3497–3504

    Article  CAS  PubMed  Google Scholar 

  29. Sambrook J, Russell DW (2003) Molecular cloning: a laboratory manual (III). Cold Spring Harbor Laboratory Press, ColdSpring Harbor, Chapters 5 and 10

    Google Scholar 

  30. Yershov G, Barsky V, Belgovskiy A, Kirillov E et al (1996) DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci U S A 93:4913–4918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Dyukova VI, Dementieva EI, Zubtsov DA, Galanina OE et al (2005) Hydrogel glycan microarrays. Anal Biochem 347:94–105

    Article  CAS  PubMed  Google Scholar 

  32. Mitra RD, Church GM (1999) In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res 27, e34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dubiley S, Kirillov E, Lysov Y, Mirzabekov A (1997) Fractionation, phosphorylation and ligation on oligonucleotide microchips to enhance sequencing by hybridization. Nucleic Acids Res 25:2259–2265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mitra RD, Shendure J, Olejnik J, Edyta Krzymanska O, Church GM (2003) Fluorescent in situ sequencing on polymerase colonies. Anal Biochem 320:55–65

    Article  CAS  PubMed  Google Scholar 

  35. Dubiley S, Kirillov E, Mirzabekov A (1999) Polymorphism analysis and gene detection by minisequencing on an array of gel-immobilized primers. Nucleic Acids Res 27, e19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F et al (2000) Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280:103–110

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinxin Song or Guohua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xiao, P., Huang, H., Zou, B., Song, Q., Zhou, G., Lu, Z. (2016). Gel Immobilization of Acrylamide-Modified Single-Stranded DNA Template for Pyrosequencing. In: Zhou, G., Song, Q. (eds) Advances and Clinical Practice in Pyrosequencing. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3308-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3308-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3306-8

  • Online ISBN: 978-1-4939-3308-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics