Skip to main content

Genetic Methods for Cellular Manipulations in C. elegans

  • Protocol
C. elegans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1327))

Abstract

Neuron manipulation in vivo by ablation, activation, or inactivation, and regulation of gene expression, is essential for dissecting nervous system function. Here we describe genetic means for neuron manipulation in the nematode C. elegans, and provide protocols for generating transgenic animals containing these genetic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery L, Horvitz HR (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3:473–485

    Article  CAS  PubMed  Google Scholar 

  2. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527

    Article  CAS  PubMed  Google Scholar 

  3. Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742

    Article  CAS  PubMed  Google Scholar 

  4. Chalfie M, Sulston JE, White JG et al (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5:956–964

    CAS  PubMed  Google Scholar 

  5. Fang-Yen C, Gabel CV, Samuel AD et al (2012) Laser microsurgery in Caenorhabditis elegans. Methods Cell Biol 107:177–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chelur DS, Chalfie M (2007) Targeted cell killing by reconstituted caspases. Proc Natl Acad Sci U S A 104:2283–2288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fares H, Greenwald I (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159:133–145

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Shaham S, Horvitz HR (1996) Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 10:578–591

    Article  CAS  PubMed  Google Scholar 

  9. Conradt B, Horvitz HR (1998) The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93:519–529

    Article  CAS  PubMed  Google Scholar 

  10. Procko C, Lu Y, Shaham S (2011) Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Development 138:1371–1381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Harbinder S, Tavernarakis N, Herndon LA et al (1997) Genetically targeted cell disruption in Caenorhabditis elegans. Proc Natl Acad Sci U S A 94:13128–13133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Treinin M, Chalfie M (1995) A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron 14:871–877

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi J, Shidara H, Morisawa Y et al (2013) A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed. Neurosci Lett 548:261–264

    Article  CAS  PubMed  Google Scholar 

  14. Qi YB, Garren EJ, Shu X et al (2012) Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc Natl Acad Sci U S A 109:7499–7504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Williams DC, Bejjani RE, Ramirez PM et al (2013) Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Rep 5:553–563

    Article  CAS  PubMed  Google Scholar 

  16. Dickinson DJ, Ward JD, Reiner DJ et al (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Esposito G, Di Schiavi E, Bergamasco C et al (2007) Efficient and cell specific knock-down of gene function in targeted C. elegans neurons. Gene 395:170–176

    Article  CAS  PubMed  Google Scholar 

  18. Qadota H, Inoue M, Hikita T et al (2007) Establishment of a tissue-specific RNAi system in C. elegans. Gene 400:166–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299

    Article  PubMed Central  PubMed  Google Scholar 

  21. Husson SJ, Liewald JF, Schultheis C et al (2012) Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. PLoS One 7:e40937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kawano T, Po MD, Gao S et al (2011) An imbalancing act: gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion. Neuron 72:572–586

    Article  CAS  PubMed  Google Scholar 

  23. Kunkel MT, Johnstone DB, Thomas JH et al (2000) Mutants of a temperature-sensitive two-P domain potassium channel. J Neurosci 20:7517–7524

    CAS  PubMed  Google Scholar 

  24. Okazaki A, Sudo Y, Takagi S (2012) Optical silencing of C. elegans cells with arch proton pump. PLoS One 7:e35370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pokala N, Liu Q, Gordus A et al (2014) Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc Natl Acad Sci U S A 111:2770–2775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Reiner DJ, Weinshenker D, Tian H et al (2006) Behavioral genetics of Caenorhabditis elegans unc-103-encoded erg-like K(+) channel. J Neurogenet 20:41–66

    Article  CAS  PubMed  Google Scholar 

  27. Stirman JN, Crane MM, Husson SJ et al (2011) Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat Methods 8:153–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  29. Macosko EZ, Pokala N, Feinberg EH et al (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458:1171–1175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Schiavo G, Benfenati F, Poulain B et al (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  CAS  PubMed  Google Scholar 

  31. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  32. Edwards SL, Charlie NK, Milfort MC et al (2008) A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6:e198

    Article  PubMed Central  PubMed  Google Scholar 

  33. Liu J, Ward A, Gao J et al (2010) C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat Neurosci 13:715–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  35. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Okochi Y, Kimura KD, Ohta A et al (2005) Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO J 24:2127–2137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sieburth D, Madison JM, Kaplan JM (2007) PKC-1 regulates secretion of neuropeptides. Nat Neurosci 10:49–57

    Article  CAS  PubMed  Google Scholar 

  38. Weissenberger S, Schultheis C, Liewald JF et al (2011) PACalpha—an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116:616–625

    Article  CAS  PubMed  Google Scholar 

  39. Davis MW, Morton JJ, Carroll D et al (2008) Gene activation using FLP recombinase in C. elegans. PLoS Genet 4:e1000028

    Article  PubMed Central  PubMed  Google Scholar 

  40. Schmitt C, Schultheis C, Pokala N et al (2012) Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PLoS One 7:e43164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Guo ZV, Hart AC, Ramanathan S (2009) Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Methods 6:891–896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Leifer AM, Fang-Yen C, Gershow M et al (2011) Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8:147–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482

    Article  CAS  PubMed  Google Scholar 

  44. Way JC, Wang L, Run JQ et al (1991) The mec-3 gene contains cis-acting elements mediating positive and negative regulation in cells produced by asymmetric cell division in Caenorhabditis elegans. Genes Dev 5:2199–2211

    Article  CAS  PubMed  Google Scholar 

  45. Praitis V, Casey E, Collar D et al (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157:1217–1226

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32:728–730

    CAS  PubMed  Google Scholar 

  47. Frokjaer-Jensen C, Davis MW, Hopkins CE et al (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40:1375–1383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Collier RJ (1975) Diphtheria toxin: mode of action and structure. Bacteriol Rev 39:54–85

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I would like to thank Shai Shaham, Aakanksha Singhvi, In Hae Lee, and Sean Wallace for comments and discussions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menachem Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Katz, M. (2015). Genetic Methods for Cellular Manipulations in C. elegans . In: Biron, D., Haspel, G. (eds) C. elegans. Methods in Molecular Biology, vol 1327. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4939-2842-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2842-2_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4939-2841-5

  • Online ISBN: 978-1-4939-2842-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics