Skip to main content

Application of Graphene-Based Transparent Conductors (TCs)

  • Chapter
  • First Online:
Graphene for Transparent Conductors
  • 1698 Accesses

Abstract

As graphene has several potential advantages over indium tin oxide (ITO) including weight, robustness, flexibility, chemical stability, and cost, many applications, such as touch panels, displays, solar cells, organic light-emitting diode, transistors, and other new areas, have been demonstrated. Although the application of graphene for transparent conductors (TCs) is still in its early stage and the performances of some devices presented in this book are in a preoptimized state, the unique functional characteristics can make graphene a strong candidate to replace the currently commercially dominant TC materials. These devices, with their functional, structural, and mechanical requirements, where graphene has been considered to apply are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wassei, J. K., & Kaner, R. B. (2010). Graphene, a promising transparent conductor. Materials Today, 13, 52–59.

    Article  Google Scholar 

  2. Pang, S. P., Hernandez, Y., Feng, X. L., & Mullen, K. (2011). Graphene as transparent ­electrode material for organic electronics. Advanced Materials, 23, 2779–2795.

    Article  Google Scholar 

  3. Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4, 611–622.

    Article  Google Scholar 

  4. Hecht, D. S., Hu, L. B., & Irvin, G. (2011). Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials, 23, 1482–1513.

    Article  Google Scholar 

  5. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.

    Article  Google Scholar 

  6. Lee, Y., & Ahn, J. H. (2013). Graphene-based transparent conductive films. Nano, 8, 1330001.

    Article  Google Scholar 

  7. Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y. H., & Lee, T. (2012). The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 23, 112001.

    Article  Google Scholar 

  8. Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K., & Novoselov, K. S. (2008). Graphene-based liquid crystal device. Nano Letters, 8, 1704–1708.

    Article  Google Scholar 

  9. Jo, G., Choe, M., Cho, C. Y., Kim, J. H., Park, W., Lee, S., Hong, W. K., Kim, T. W., Park, S. J., Hong, B. H., Kahng, Y. H., & Lee, T. (2010). Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 21, 175201.

    Article  Google Scholar 

  10. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710.

    Article  Google Scholar 

  11. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35.

    Article  Google Scholar 

  12. Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.

    Article  Google Scholar 

  13. Choe, M., Lee, B. H., Jo, G., Park, J., Park, W., Lee, S., Hong, W. K., Seong, M. J., Kahng, Y. H., Lee, K., & Lee, T. (2010). Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Organic Electronics, 11, 1864–1869.

    Article  Google Scholar 

  14. Yin, Z. Y., Wu, S. X., Zhou, X. Z., Huang, X., Zhang, Q. C., Boey, F., & Zhang, H. (2010). Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small, 6, 307–312.

    Article  Google Scholar 

  15. Li, X. M., Zhu, H. W., Wang, K. L., Cao, A. Y., Wei, J. Q., Li, C. Y., Jia, Y., Li, Z., Li, X., & Wu, D. H. (2010). Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 22, 2743–2748.

    Article  Google Scholar 

  16. Shim, J. P., Choe, M., Jeon, S. R., Seo, D., Lee, T., & Lee, D. S. (2011). InGaN-based p-i-n solar cells with graphene electrodes. Applied Physics Express, 4, 052302.

    Article  Google Scholar 

  17. De Arco, L. G., Zhang, Y., Schlenker, C. W., Ryu, K., Thompson, M. E., & Zhou, C. W. (2010). Continuous, highly flexible, and transparent graphene films by chemical vapor ­deposition for organic photovoltaics. Acs Nano, 4, 2865–2873.

    Article  Google Scholar 

  18. Huang, J. H., Fang, J. H., Liu, C. C., & Chu, C. W. (2011). Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic ­optoelectronics. Acs Nano, 5, 6262–6271.

    Article  Google Scholar 

  19. Jo, G., Na, S. I., Oh, S. H., Lee, S., Kim, T. S., Wang, G., Choe, M., Park, W., Yoon, J., Kim, D. Y., Kahng, Y. H., & Lee, T. (2010). Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Applied Physics Letters, 97, 213301.

    Article  Google Scholar 

  20. Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, 5, 487–496.

    Article  Google Scholar 

  21. Di, C. A., Wei, D. C., Yu, G., Liu, Y. Q., Guo, Y. L., & Zhu, D. B. (2008). Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Advanced Materials, 20, 3289–3293.

    Article  Google Scholar 

  22. Liu, W., Jackson, B. L., Zhu, J., Miao, C. Q., Chung, C. H., Park, Y. J., Sun, K., Woo, J., & Xie, Y. H. (2010). Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors. Acs Nano, 4, 3927–3932.

    Article  Google Scholar 

  23. Cao, Y., Wei, Z. M., Liu, S., Gan, L., Guo, X. F., Xu, W., Steigerwald, M. L., Liu, Z. F., & Zhu, D. B. (2010). High-performance Langmuir–Blodgett monolayer transistors with high responsivity. Angewandte Chemie-International Edition, 49, 6319–6323.

    Article  Google Scholar 

  24. Cao, Y., Liu, S., Shen, Q., Yan, K., Li, P. J., Xu, J., Yu, D. P., Steigerwald, M. L., Nuckolls, C., Liu, Z. F., & Guo, X. F. (2009). High-performance photoresponsive organic nanotransistors with single-layer graphenes as two-dimensional electrodes. Advanced Functional Materials, 19, 2743–2748.

    Article  Google Scholar 

  25. Pang, S. P., Tsao, H. N., Feng, X. L., & Mullen, K. (2009). Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Advanced Materials, 21, 3488–3491.

    Article  Google Scholar 

  26. Hong, S. K., Kim, K. Y., Kim, T. Y., Kim, J. H., Park, S. W., Kim, J. H., & Cho, B. J. (2012). Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology, 23, 455704.

    Article  Google Scholar 

  27. Li, N., Huang, Y., Du, F., He, X. B., Lin, X., Gao, H. J., Ma, Y. F., Li, F. F., Chen, Y. S., & Eklund, P. C. (2006). Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Letters, 6, 1141–1145.

    Article  Google Scholar 

  28. Chu, C. W., Ouyang, J., Tseng, H. H., & Yang, Y. (2005). Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Advanced Materials, 17, 1440–1443.

    Article  Google Scholar 

  29. Joo, J., & Lee, C. Y. (2000). High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. Journal of Applied Physics, 88, 513–518.

    Article  Google Scholar 

  30. Sun, D. P., Zou, Q., Qian, G. Q., Sun, C., Jiang, W., & Li, F. S. (2013). Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater, 61, 5829–5834.

    Article  Google Scholar 

  31. Gupta, T. K., Singh, B. P., Singh, V. N., Teotia, S., Singh, A. P., Elizabeth, I., Dhakate, S. R., Dhawanc, S. K., & Mathur, R. B. (2014). MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. Journal of Materials Chemistry A, 2, 4256–4263.

    Article  Google Scholar 

  32. Zhang, L., Alvarez, N. T., Zhang, M., Haase, M., Malik, R., Mast, D., & Shanov, V. (2015). Preparation and characterization of graphene paper for electromagnetic interference ­shielding. Carbon, 82, 353–359.

    Article  Google Scholar 

  33. Zhang, H. B., Yan, Q., Zheng, W. G., He, Z. X., & Yu, Z. Z. (2011). Tough graphene-polymer microcellular foams for electromagnetic interference shielding. Acs Applied Materials & ­Interfaces, 3, 918–924.

    Article  Google Scholar 

  34. Chen, Y., Wang, Y., Zhang, H.-B., Li, X., Gui, C.-X., & Yu, Z.-Z. (2015). Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon, 82, 67–76.

    Article  Google Scholar 

  35. Yousefi, N., Sun, X. Y., Lin, X. Y., Shen, X., Jia, J. J., Zhang, B., Tang, B. Z., Chan, M. S., & Kim, J. K. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Advanced Materials, 26, 5480–5487.

    Article  Google Scholar 

  36. Chen, Z. P., Xu, C., Ma, C. Q., Ren, W. C., Cheng, H. M. (2013). Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. ­Advanced Materials, 25, 1296–1300.

    Article  Google Scholar 

  37. Yan, H. G., Li, X. S., Chandra, B., Tulevski, G., Wu, Y. Q., Freitag, M., Zhu, W. J., Avouris, P., & Xia, F. N. (2012). Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotechnology, 7, 330–334.

    Article  Google Scholar 

  38. Bae, J. J., Lim, S. C., Han, G. H., Jo, Y. W., Doung, D. L., Kim, E. S., Chae, S. J., Huy, T. Q., Luan, N. V., & Lee, Y. H. (2012). Heat dissipation of transparent graphene defoggers. Advanced Functional Materials, 22, 4819–4826.

    Article  Google Scholar 

  39. Fan, G. Q., & Manson, J. R. (2009). Theory of direct scattering, trapping, and desorption in atom-surface collisions. Physical Review B, 79, 045424.

    Article  Google Scholar 

  40. Munoz, R., & Gomez-Aleixandre, C. (2014). Fast and non-catalytic growth of transparent and conductive graphene-like carbon films on glass at low temperature. J Phys D Appl Phys, 47, 045305.

    Article  Google Scholar 

  41. Sugimoto, T., Ono, K., Ando, A., Kurozumi, K., Hara, A., Morita, Y., & Miura, A. (2009). PVDF-driven flexible and transparent loudspeaker. Appl Acoust, 70, 1021–1028.

    Article  Google Scholar 

  42. Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007). Electromechanical resonators from ­graphene sheets. Science, 315, 490–493.

    Article  Google Scholar 

  43. Zhou, Q., & Zettl, A. (2013). Electrostatic graphene loudspeaker. Applied Physics Letters, 102, 223109.

    Article  Google Scholar 

  44. Xu, S. C., Man, B. Y., Jiang, S. Z., Chen, C. S., Yang, C., Liu, M., Gao, X. G., Sun, Z. C., & Zhang, C. (2013). Flexible and transparent graphene-based loudspeakers. Applied Physics Letters, 102, 151902.

    Article  Google Scholar 

  45. Sui, D., Huang, Y., Huang, L., Liang, J. J., Ma, Y. F., & Chen, Y. S. (2011). Flexible and ­transparent electrothermal film heaters based on graphene materials. Small, 7, 3186–3192.

    Article  Google Scholar 

  46. Kim, J. H., Du Ahn, B., Kim, C. H., Jeon, K. A., Kang, H. S., & Lee, S. Y. (2008). Heat generation properties of Ga doped ZnO thin films prepared by rf-magnetron sputtering for transparent heaters. Thin Solid Films, 516, 1330–1333.

    Article  Google Scholar 

  47. Kang, J., Kim, H., Kim, K. S., Lee, S. K., Bae, S., Ahn, J. H., Kim, Y. J., Choi, J. B., & Hong, B. H. (2011). High-performance graphene-based transparent flexible heaters. Nano Letters, 11, 5154–5158.

    Article  Google Scholar 

  48. Wu, C. Z., Feng, J., Peng, L. L., Ni, Y., Liang, H. Y., He, L. H., & Xie, Y. (2011). Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: new prototype robotic motions under infrared-light stimuli. Journal of Materials Chemistry, 21, 18584–18591.

    Article  Google Scholar 

  49. Jiang, H. Y., Kelch, S., & Lendlein, A. (2006). Polymers move in response to light. Advanced Materials, 18, 1471–1475.

    Article  Google Scholar 

  50. Kim, U., Kang, J., Lee, C., Kwon, H. Y., Hwang, S., Moon, H., Koo, J. C., Nam, J. D., Hong, B. H., Choi, J. B., & Choi, H. R. (2013). A transparent and stretchable graphene-based ­actuator for tactile display. Nanotechnology, 24, 145501.

    Article  Google Scholar 

  51. Hwang, T., Kwon, H. Y., Oh, J. S., Hong, J. P., Hong, S. C., Lee, Y., Choi, H. R., Kim, K. J., Bhuiya, M. H., & Nam, J. D. (2013). Transparent actuator made with few layer graphene ­electrode and dielectric elastomer, for variable focus lens. Applied Physics Letters, 103, 023106.

    Article  Google Scholar 

  52. Lipomi, D. J., Vosgueritchian, M., Tee, B. C. K., Hellstrom, S. L., Lee, J. A., Fox, C. H., & Bao, Z. N. (2011). Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 6, 788–792.

    Article  Google Scholar 

  53. Hwang, S. H., Ahn, H. J., Yoon, J. C., Jang, J. H., & Park, Y. B. (2013). Transparent ­graphene films with a tunable piezoresistive response. Journal of Materials Chemistry C, 1, 7208–7214.

    Article  Google Scholar 

  54. Bae, S. H., Lee, Y., Sharma, B. K., Lee, H. J., Kim, J. H., & Ahn, J. H. (2013). Graphene-based transparent strain sensor. Carbon, 51, 236–242.

    Article  Google Scholar 

  55. Wang, Y., Wang, L., Yang, T. T., Li, X., Zang, X. B., Zhu, M., Wang, K. L., Wu, D. H., & Zhu, H. W. (2014). Wearable and highly sensitive graphene strain sensors for human motion monitoring. Advanced Functional Materials, 24, 4666–4670.

    Article  Google Scholar 

  56. Choi, H. J., Jung, S. M., Seo, J. M., Chang, D. W., Dai, L. M., & Baek, J. B. (2012). Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 1, 534–551.

    Article  Google Scholar 

  57. Chen, T., Xue, Y. H., Roy, A. K., & Dai, L. M. (2014). Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. Acs Nano, 8, 1039–1046.

    Article  Google Scholar 

  58. Yu, A. P., Roes, I., Davies, A., Chen, Z. W. (2010). Ultrathin, transparent, and flexible ­graphene films for supercapacitor application. Applied Physics Letters, 96, 253105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbin Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zheng, Q., Kim, JK. (2015). Application of Graphene-Based Transparent Conductors (TCs). In: Graphene for Transparent Conductors., vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2769-2_5

Download citation

Publish with us

Policies and ethics