Skip to main content

Tools to Assist Determination and Validation of Carbohydrate 3D Structure Data

  • Protocol
  • First Online:
Glycoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1273))

Abstract

The frequency of glycosylated protein 3D structures in the Protein Data Bank (PDB) is significantly lower than the proportion of glycoproteins in nature, and if glycan 3D structures are present, then they often exhibit a large degree of errors. There are various reasons for this, one of which is a comparably low support of carbohydrates in software tools for 3D structure determination and validation. This chapter illustrates the current features that assist crystallographers with handling glycans during 3D structure determination in Coot and CNS and with validation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  2. Moremen KW et al (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Apweiler R et al (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    Article  CAS  PubMed  Google Scholar 

  4. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lütteke T et al (2004) Data mining the protein data bank: automatic detection and assignment of carbohydrate structures. Carbohydr Res 339:1015–1020

    Article  PubMed  Google Scholar 

  6. Lütteke T (2009) Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallogr D Biol Crystallogr 65:156–168

    Article  PubMed Central  PubMed  Google Scholar 

  7. Szymanski CM, Wren BW (2005) Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3:225–237

    Article  CAS  PubMed  Google Scholar 

  8. Kowarik M et al (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25:1957–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93

    Article  CAS  PubMed  Google Scholar 

  10. Molinari M (2007) N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol 3:313–320

    Article  CAS  PubMed  Google Scholar 

  11. Roth J et al (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30:497–506

    Article  CAS  PubMed  Google Scholar 

  12. Wormald MR, Dwek RA (1999) Glycoproteins: glycan presentation and protein-fold stability. Struct Fold Des 7:R155–R160

    Article  CAS  Google Scholar 

  13. Bosques CJ et al (2004) Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc 126:8421–8425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Davis SJ, Crispin M (2011) Solutions to the glycosylation problem for low- and high-throughput structural glycoproteomics. In: Owens RJ, Nettleship JE (eds) Functional and structural proteomics of glycoproteins. Springer, Dordrecht, pp 127–158

    Google Scholar 

  15. Rudd PM et al (1997) The glycosylation of the complement regulatory protein, human erythrocyte CD59. J Biol Chem 272:7229–7244

    Article  CAS  PubMed  Google Scholar 

  16. Kozar T et al (1998) Studies on the conformational behaviour of GlcNAc-Man3-GlcNAc2 oligosaccharides using molecular dynamics simulations. Glycoconj J 15:187–191

    Article  CAS  PubMed  Google Scholar 

  17. Nagae M, Yamaguchi Y (2012) Function and 3D structure of the N-glycans on glycoproteins. Int J Mol Sci 13:8398–8429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chang VT et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Crispin M et al (2007) Building meaningful models of glycoproteins. Nat Struct Mol Biol 14:354

    Article  CAS  PubMed  Google Scholar 

  20. Nakahara T et al (2008) Glycoconjugate data bank: structures – an annotated glycan structure database and N-glycan primary structure verification service. Nucleic Acids Res 36:D368–D371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Henrick K et al (2008) Remediation of the protein data bank archive. Nucleic Acids Res 36:D426–D433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Feng Z et al (2004) Ligand depot: a data warehouse for ligands bound to macromolecules. Bioinformatics 20:2153–2155

    Article  CAS  PubMed  Google Scholar 

  23. Lütteke T, von der Lieth CW (2004) pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinformatics 5:69

    Article  PubMed Central  PubMed  Google Scholar 

  24. Laskowski RA et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  25. Hooft RW et al (1996) Errors in protein structures. Nature 381:272

    Article  CAS  PubMed  Google Scholar 

  26. Davis IW et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383

    Article  PubMed Central  PubMed  Google Scholar 

  27. Read RJ et al (2011) A new generation of crystallographic validation tools for the protein data bank. Structure 19:1395–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Emsley P et al (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Brunger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  CAS  PubMed  Google Scholar 

  30. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733

    Article  CAS  PubMed  Google Scholar 

  31. Ramachandran GN et al (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  32. Hooft RW et al (1997) Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci 13:425–430

    CAS  PubMed  Google Scholar 

  33. Petrescu AJ et al (1999) A statistical analysis of N- and O-glycan linkage conformations from crystallographic data. Glycobiology 9:343–352

    Article  CAS  PubMed  Google Scholar 

  34. Wormald MR et al (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modeling. Chem Rev 102:371–386

    Article  CAS  PubMed  Google Scholar 

  35. Lütteke T et al (2005) Carbohydrate structure suite (CSS): analysis of carbohydrate 3D structures derived from the protein data bank. Nucleic Acids Res 33:D242–D246

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lütteke T, von der Lieth CW (2009) Data mining the PDB for glyco-related data. Methods Mol Biol 534:293–310

    PubMed  Google Scholar 

  37. Frank M et al (2007) GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nucleic Acids Res 35:287–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Vagin AA et al (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 60:2184–2195

    Article  PubMed  Google Scholar 

  39. Fitzgerald PMD et al (1996) The mmCIF dictionary: community review and final approval. Acta Crystallogr A 52:C575

    Google Scholar 

  40. Saenger W (1983) Principles of nucleic acid structure. Springer, Berlin

    Google Scholar 

  41. Brooks BR et al (1983) Charmm – a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  42. Ha SN et al (1988) A revised potential-energy surface for molecular mechanics studies of carbohydrates. Carbohydr Res 180:207–221

    Article  CAS  PubMed  Google Scholar 

  43. Jeffrey GA (1990) Crystallographic studies of carbohydrates. Acta Crystallogr B Struct Sci 46:89–103

    Article  Google Scholar 

  44. Hirotsu K, Shimada A (1974) Crystal and molecular-structure of beta-lactose. Bull Chem Soc Jpn 47:1872–1879

    Article  CAS  Google Scholar 

  45. Weis WI et al (1990) Refinement of the influenza-virus hemagglutinin by simulated annealing. J Mol Biol 212:737–761

    Article  CAS  PubMed  Google Scholar 

  46. Engh RA, Huber R (1991) Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr A 47:392–400

    Article  Google Scholar 

  47. Schroder GF et al (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464:1218–1222

    Article  PubMed Central  PubMed  Google Scholar 

  48. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  49. Kleywegt GJ et al (2004) The Uppsala electron-density server. Acta Crystallogr D Biol Crystallogr 60:2240–2249

    Article  PubMed  Google Scholar 

  50. Raman R et al (2003) Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc Natl Acad Sci U S A 100:2357–2362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lütteke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Emsley, P., Brunger, A.T., Lütteke, T. (2015). Tools to Assist Determination and Validation of Carbohydrate 3D Structure Data. In: Lütteke, T., Frank, M. (eds) Glycoinformatics. Methods in Molecular Biology, vol 1273. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2343-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2343-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2342-7

  • Online ISBN: 978-1-4939-2343-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics