Skip to main content

Statistical Analysis of Amino Acids in the Vicinity of Carbohydrate Residues Performed by GlyVicinity

  • Protocol
  • First Online:
Book cover Glycoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1273))

Abstract

Protein–carbohydrate interactions are involved in various essential biological events. 3D structural data from the Protein Data Bank (PDB) can help to understand the molecular basis of the specificity of carbohydrate recognition by proteins. Such interactions can be analyzed statistically using GlyVicinity. This chapter exemplifies the usage of this tool to find information on the frequency of the occurrence of specific amino acids in the vicinity of individual carbohydrate residues and to analyze the type of interacting atoms and their spatial distribution around the glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki A (2006) Nothing in glycobiology makes sense, except in the light of evolution. Cell 126:841–845

    Article  CAS  PubMed  Google Scholar 

  2. Yarema KJ, Bertozzi CR (2001) Characterizing glycosylation pathways. Genome Biol 2:REVIEWS0004

    Google Scholar 

  3. Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28:321–327

    Article  CAS  Google Scholar 

  4. Etzler ME, Esko JD (2009) Free glycans as signaling molecules. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, pp 523–529

    Google Scholar 

  5. Schwartz-Albiez R (2009) Inflammation and Glycosciences. In: Gabius HJ (ed) The sugar code. Wiley-VCH, Weinheim, Germany, pp 447–463

    Google Scholar 

  6. Lowe JB (2003) Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol 15:531–538

    Article  CAS  PubMed  Google Scholar 

  7. Karlsson KA (2001) Pathogen-host protein-carbohydrate interactions as the basis of important infections. Adv Exp Med Biol 491:431–443

    Article  CAS  PubMed  Google Scholar 

  8. Smith AE, Helenius A (2004) How viruses enter animal cells. Science 304:237–242

    Article  CAS  PubMed  Google Scholar 

  9. Gabius HJ et al (2004) Chemical biology of the sugar code. Chembiochem 5:740–764

    Article  CAS  PubMed  Google Scholar 

  10. Ip WK et al (2009) Mannose-binding lectin and innate immunity. Immunol Rev 230:9–21

    Article  PubMed  Google Scholar 

  11. Heitzeneder S et al (2012) Mannan-binding lectin deficiency – good news, bad news, doesn’t matter? Clin Immunol 143:22–38

    Article  CAS  PubMed  Google Scholar 

  12. Lütteke T et al (2006) GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology 16:71R–81R

    Article  PubMed  Google Scholar 

  13. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lütteke T (2009) Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallogr D Biol Crystallogr 65:156–168

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lütteke T et al (2004) Data mining the protein data bank: automatic detection and assignment of carbohydrate structures. Carbohydr Res 339:1015–1020

    Article  PubMed  Google Scholar 

  16. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  17. http://ezcomponents.org/

  18. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    Article  CAS  PubMed  Google Scholar 

  19. Lehmann WD et al (2000) The information encrypted in accurate peptide masses-improved protein identification and assistance in glycopeptide identification and characterization. J Mass Spectrom 35:1335–1341

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Rojas-Macias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rojas-Macias, M.A., Lütteke, T. (2015). Statistical Analysis of Amino Acids in the Vicinity of Carbohydrate Residues Performed by GlyVicinity. In: Lütteke, T., Frank, M. (eds) Glycoinformatics. Methods in Molecular Biology, vol 1273. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2343-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2343-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2342-7

  • Online ISBN: 978-1-4939-2343-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics