Skip to main content

Radiologically Imageable Nanoparticles

  • Chapter
  • First Online:
Imaging and Visualization in The Modern Operating Room

Abstract

Nanomaterials have been used industrially for several decades, yet it has only been in the last several years that they have been investigated for medical applications such as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI). Engineered nanomaterials are highly attractive due the range of physical properties that can be selected based on core material and geometry. Through surface modification, nanomaterials can be made increasingly complex imparting a range of desired chemical and biological properties. In this chapter, we describe nanotechnologies that have been specifically engineered to yield significant improvements in diagnostic imaging including improved image contrast, longer imaging probe circulation time, reduced nephrotoxicity and patient discomfort, and the potential for multimodal imaging with a single administered dose. Despite the perceived promise, few nanomaterials have made their way into the clinical setting. Where possible we present here specific examples of approved and discontinued radiologically imageable nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen LC, Huang JL, Wang CR, Yeh KW, Lin SJ. Use of standard radiography to diagnose paranasal sinus disease of asthmatic children in Taiwan: Comparison with computed tomography. Asian Pac J Allergy Immunol. 1999;17(2):69–76.

    CAS  PubMed  Google Scholar 

  2. Hounsfield GN. Computerized transverse axial scanning (tomography).1. description of system. Br J Radiol. 1973;46(552):1016–22.

    Article  CAS  PubMed  Google Scholar 

  3. Jackson DF, Hawkes DJ. X-ray attenuation coefficients of elements and mixtures. Phys Rep-Rev Sec Phys Lett. 1981;70(3):169–233.

    CAS  Google Scholar 

  4. Chantler CT, Olsen K, Dragoset RA, Chang J, Kishore AR, Kotochigova SA, Zucker DS. X-ray form factor, attenuation, and scattering table. Gaithersburg: National Institute of Standards and Technology; 2005.

    Google Scholar 

  5. Nicholas Joseph Jr RT. Quality assurance and the helical (Spiral) scanner. CE Esssentials; 2004–2010. http://www.ceessentials.net/article33.html. Accessed 7 April 2014.

  6. Ott DJ, Gelfand DW. Gastrointestinal contrast agents—indications, uses, and risks. JAMA. 1983;249(17):2380–4.

    Article  CAS  PubMed  Google Scholar 

  7. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

    Article  CAS  PubMed  Google Scholar 

  8. Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. 2014;9(1):37–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yin Q, Yap FY, Yin LC, Ma L, Zhou Q, Dobrucki LW, et al. Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2013;135(37):13620–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Shilo M, Reuveni T, Motiei M, Popovtzer R. Nanoparticles as computed tomography contrast agents: current status and future perspectives. Nanomedicine. 2012;7(2):257–69.

    Article  CAS  PubMed  Google Scholar 

  11. Xi D, Dong S, Meng X, Lu Q, Meng L, Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. Rsc Adv. 2012;2(33):12515–24.

    Article  CAS  Google Scholar 

  12. Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomed. 2011;6:2859–64.

    CAS  Google Scholar 

  13. Chien CC, Chen HH, Lai SF, Wu KC, Cai XQ, Hwu YK, et al. Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature. J Nanobiotechnol. 2012;10:10. doi:10.1186/1477-3155-10-10.

    Article  CAS  Google Scholar 

  14. Liu YL, Liu JH, Ai KL, Yuan QH, Lu LH. Recent advances in ytterbium-based contrast agents for in vivo X-ray computed tomography imaging: promises and prospects. Contrast Media Mol Imaging. 2014;9(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  15. Kinsella JM, Jimenez RE, Karmali PP, Rush AM, Kotamraju VR, Gianneschi NC, et al. X-Ray Computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew Chem-Int Edit. 2011;50(51):12308–11.

    Article  CAS  Google Scholar 

  16. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5(2):118–22.

    Article  CAS  PubMed  Google Scholar 

  17. Bonitatibus PJ, Torres AS, Goddard GD, FitzGerald PF, Kulkarni AM. Synthesis, characterization, and computed tomography imaging of a tantalum oxide nanoparticle imaging agent. Chem Commun. 2010;46(47):8956–8.

    Article  CAS  Google Scholar 

  18. Zhou Z, Kong B, Yu C, Shi X, Wang M, Liu W, et al. Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci Rep. 2014;4:3653. doi:10.1038/srep03653.

    PubMed Central  PubMed  Google Scholar 

  19. Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21:2133–48.

    Article  CAS  Google Scholar 

  20. Gallo J, Long NJ, Aboagye EO. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev. 2013;42(19):7816–33. (Epub 21 Jun 2013.)

    Article  CAS  PubMed  Google Scholar 

  21. Nohyun Lee TH. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2011;41(7):2575–89.

    PubMed  Google Scholar 

  22. Pierre VC, Allen MJ, Caravan P. Contrast agents for MRI: 30+ years and where are we going? J Biol Inorg Chem. 2014;19:127–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhu D, Ma L, Liu D, Wang Z. Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci. 2013;14(5):10591–607.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Josephson L. Magnetic nanoparticles for MR imaging. In: Ferrari M, Lee AP, Lee LJ, editors. BioMEMS and biomedical nanotechnology. USA: Springer; 2006. p. 227–37.

    Chapter  Google Scholar 

  25. Pablico-Lansigans MH, Situ SF, Samia AC. Magnetic particle imaging: advancements and perspective for real-time monitoring and image-guided therapy. Nanoscale. 2013;5(10):4040–55.

    Article  Google Scholar 

  26. Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging in Med Surg. 2011;1(1):35–40.

    Google Scholar 

  27. Magnetic Resonance TIP—MRI database: resovist softways. http://www.mr-tip.com/serv1.php?type=db1&dbs=Resovist. Accessed 28 July 2014.

  28. Sun Sheng-Nan WC, Zhu Zan-Zan, et al. Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications. Chin Phys B. 2014;23(3):037503.

    Article  Google Scholar 

  29. Tassa C, Shaw SY, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics and therapy. Acc Chem Res. 2001;44(10):842–52. (Epub June 10, 2011.)

    Article  Google Scholar 

  30. Peter L. Choyke YM. Ferumoxytol enhanced MRI for the detection of lymph node involvement in prostate cancer national cancer institute at the national institutes of health; 2014 [updated March 16, 2014; cited 2014]. http://www.cancer.gov/clinicaltrials/search/view?cdrid=695775&protocolsearchid=6587666&version=healthprofessional. Accessed 8 April 2014.

  31. Guoqiu Wu, Xiaodong W, Gang Deng, Linyuan Wu, Shenghong Ju, Gaojun Teng, Yuyu Yao, Xiyong Wang, Naifeng Liu. Novel peptide targeting integrin V3-rich tumor cells by magnetic resonance imaging. J Magentic Reson Imaging. 2011;34(2):395–402.

    Article  Google Scholar 

  32. Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 2013;9(9–10):1450–66. (Epub December 12, 2012.)

    Article  CAS  PubMed  Google Scholar 

  33. Alauddin MM. Positron emission tomography (PET) imaging with 18F-based radiotracers. Am J Nucl Med Mol Imaging. 2012;2(1):55–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683–93.

    Article  CAS  PubMed  Google Scholar 

  35. Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Cancer. 2008;8:94–107.

    Article  CAS  PubMed  Google Scholar 

  36. Welch MJ, Hawker CJ, Wooley KL. The advantages of nanoparticles for PET. J Nucl Med. 2009;50:1743–6.

    Article  CAS  PubMed  Google Scholar 

  37. Lee S, Kang SW, Ryu JH, Na JH, Lee DE, Han SJ, Kang CM, Choe YS, Lee KC, Leary JF, Choi K, Lee KH, Kim K. Tumor-homing glycol chitosan-based optical/PET dual imaging nanoprobe for cancer diagnosis. Bioconjug Chem. 2014;25:601–10.

    Article  CAS  PubMed  Google Scholar 

  38. Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng. 2013;15:253–82.

    Article  CAS  PubMed  Google Scholar 

  39. Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev. 2013;66:90–100.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodal tumor imaging. Theranostics. 2014;4(3):290–306. (Epub January 24, 2014.)

    Article  PubMed Central  PubMed  Google Scholar 

  41. Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem. 2012;23:671–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. ThorekDL, Ulmert D, Diop NF, Lupu ME, Doran MG, Huang R, Abou DS, Larson SM, Grimm J. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun. 2014;5:1–9.

    Google Scholar 

  43. Wang D, Lin B, Ai H. Theranostic nanoparticles for cancer and cardiovascular applications. Pharma Res. 2014;31:1–17.

    Article  Google Scholar 

  44. Lu ZR. Theranostics: fusion of therapeutics and diagnostics. Pharm Res. 2014;31:1355–3.

    Article  CAS  PubMed  Google Scholar 

  45. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114:5161–214.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, Wolchok J, Larson SM, Wiesner U, Bradbury MS. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Enrique Morales-Avila GF-F, Ocampo-Garcia BE, Ramirez FM. Radiolabeled nanoparticles for molecular imaging. In: Schaller PB, editor. Molecular imaging: InTech; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Mason PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Co, A., Sitarski, A., Grant, J., Mason, M. (2015). Radiologically Imageable Nanoparticles. In: Fong, Y., Giulianotti, P., Lewis, J., Groot Koerkamp, B., Reiner, T. (eds) Imaging and Visualization in The Modern Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2326-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2326-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2325-0

  • Online ISBN: 978-1-4939-2326-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics