Skip to main content

Techniques of Integration

  • Chapter
  • First Online:
More Calculus of a Single Variable

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

Abstract

By way of the Fundamental Theorem of Calculus (TheoremĀ 10.1), many properties of integrals come from properties of derivatives and vice-versa. For example, the most basic technique of integration is to recognize the integrand as the derivative of some particular function. We saw a few examples of this sort of thing in the previous chapter. Here we focus on arguably the next two most important techniques of integration: u-Substitution which comes from the Chain Rule for derivatives, and Integration by Parts which comes from the Product Rule for derivatives.

Let us be resolute in prosecuting our ends, and mild in our methods of doing so.

ā€”Claudio Aquaviva

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ailawanda, S., Oltikar, B.C., Spiegel, M.R.: Problem 260. Coll. Math. J. 16, 305ā€“306 (1985)

    Google ScholarĀ 

  2. Anderson, N.: Integration of inverse functions. Math. Gaz. 54, 52ā€“53 (1970)

    ArticleĀ  Google ScholarĀ 

  3. Apostol, T.: Calculus, vol.Ā 1, p.Ā 362. Blaisdell, New York (1961)

    Google ScholarĀ 

  4. Arora, A.K., Sudhir, K.G., Rodriguez, D.M.: Special integration techniques for trigonometric integrals. Am. Math. Mon. 95, 126ā€“130 (1988)

    ArticleĀ  Google ScholarĀ 

  5. Beetham, R.: An integral. Math. Gaz. 47, 60 (1963)

    ArticleĀ  Google ScholarĀ 

  6. Boas, R.P., Jr., Marcus, M.B.: Inverse functions and integration by parts. Am. Math. Mon. 81, 760ā€“761 (1974)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Borman, J.L.: A remark on integration by parts. Am. Math. Mon. 51, 32ā€“33 (1944)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. Bracken, P., Seiffert, H.J.: Problem 11133. Am. Math. Mon. 114, 360ā€“361 (2007)

    Google ScholarĀ 

  9. Bressoud, D.M.: Second Year Calculus, from Celestial Mechanics to Special Relativity. Springer, New York (1991)

    MATHĀ  Google ScholarĀ 

  10. Burk, F.: Numerical integration via integration by parts. Coll. Math. J. 17, 418ā€“422 (1986)

    ArticleĀ  Google ScholarĀ 

  11. Burk, F.: \(\uppi /4\) and ln2 recursively. Coll. Math. J. 18, 51 (1987)

    Google ScholarĀ 

  12. Carlson, B.C.: The logarithmic mean. Am. Math. Mon. 79, 615ā€“618 (1972)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  13. Cioranescu, N.: La gĆ©nĆ©ralisation de la premiĆØre formule de la moyenne. Lā€™Enseignement MathĆ©matique 37, 292ā€“302 (1938)

    Google ScholarĀ 

  14. Deveau, M., Hennigar, R.: Quotient rule integration by parts. Coll. Math J. 43, 254ā€“256 (2012)

    ArticleĀ  Google ScholarĀ 

  15. DĆ­az-Barrero, J.L., Herman, E.: Problem 11225. Am. Math. Mon. 114, 750 (2007)

    Google ScholarĀ 

  16. Fitt, A.D.: What they donā€™t teach you about integration at school. Math. Gaz. 72, 11ā€“15 (1988)

    ArticleĀ  Google ScholarĀ 

  17. Frohliger, J., Poss, R.: Just an average integral. Math. Mag. 62, 260ā€“261 (1989)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Glasser, M.L.: Problem 580. Coll. Math. J. 28, 235ā€“236 (1997)

    Google ScholarĀ 

  19. Hoorfar, A., Qi, F.: A new refinement of Youngā€™s inequality. Math. Inequal. Appl. 11, 689ā€“692 (2008)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. Howard, J., Schlosser, J.: Problem Q700. Math. Mag. 58, 238, 245 (1985)

    Google ScholarĀ 

  21. Jameson, G.J.O., Jameson, T.P.: Some remarkable integrals derived from a simple algebraic identity. Math. Gaz. 97, 205ā€“209 (2013)

    Google ScholarĀ 

  22. Kazarinoff, D.K.: A simple derivation of the Leibnitz-Gregory series. Am. Math. Mon. 62, 726ā€“727 (1955)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  23. Landau, M.D., Gillis, J., Shimshoni, M.: Problem E2211. Am. Math. Mon. 77, 1107ā€“1108 (1970)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. Laugwitz, D., Rodewald, B.: A simple characterization of the Gamma function. Am. Math. Mon. 94, 534ā€“536 (1987)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  25. Lupu, C., Lupu, T.: Problem 927 (unpublished solution by Mercer, P.R.) Coll. Math. J. 41, 242 (2010)

    Google ScholarĀ 

  26. Luthar, R.S., Lindstom, P.A.: Problem 288. Coll. Math. J. 17, 361ā€“362 (1986)

    Google ScholarĀ 

  27. Mazzone, E.F., Piper, B.R.: Animating nested Taylor polynomials to approximate a function. Coll. Math. J. 41, 405ā€“408 (2010)

    ArticleĀ  Google ScholarĀ 

  28. Mercer, A.McD.: Unpublished solution (by proposer) for Problem E2952. Amer. Math. Mon. 93, 568ā€“569 (1986)

    Google ScholarĀ 

  29. Mercer, A.McD.: A new mean value theorem for integrals. Math. Gaz. 97, 510ā€“512 (2013)

    Google ScholarĀ 

  30. Mitrinovic, D.S.: Analytic Inequalities, p.Ā 49. Springer, Berlin/New York (1970)

    Google ScholarĀ 

  31. Nash, C.: Infinite series by reduction formulae. Math. Gaz. 74, 140ā€“143 (1990)

    ArticleĀ  Google ScholarĀ 

  32. Nelson, R.B.: Symmetry and integration. Coll. Math. J. 26, 39ā€“41 (1995)

    ArticleĀ  Google ScholarĀ 

  33. Pecaric, J.E.: Connection between some inequalities of Gauss, Steffensen and Ostrowski. Southeast Asian Bull. Math. 13, 89ā€“91 (1989)

    MATHĀ  Google ScholarĀ 

  34. Schnell, S., Mendoza, C.: A formula for integrating inverse functions. Math. Gaz. 84, 103ā€“104 (2000)

    ArticleĀ  Google ScholarĀ 

  35. Sieffert, H.J., Chico Problem Group. Cal. State ā€“ Chico: Problem 291. Coll. Math. J. 17, 444ā€“445 (1986)

    Google ScholarĀ 

  36. Smith, C.D.: On the problem of Integration by Parts. Math. News Lett. 3, 7ā€“8 (1928)

    ArticleĀ  Google ScholarĀ 

  37. Switkes, J.: A quotient rule integration by parts formula. Coll. Math. J. 36, 58ā€“60 (2005)

    ArticleĀ  Google ScholarĀ 

  38. Thong, D.V.: Problem 11581 (unpublished solution by Mercer, P.R.). Am. Math. Mon. 118, 557 (2011)

    Google ScholarĀ 

  39. Underhill, W.V.: Finding bounds for definite integrals. Coll. Math. J. 15, 426ā€“429 (1984)

    ArticleĀ  Google ScholarĀ 

  40. Watson, H.: A fallacy by parts. Math. Gaz. 69, 122 (1985)

    ArticleĀ  Google ScholarĀ 

  41. Witkowski, A.: On Youngā€™s inequality. J. Inequal. Pure Appl. Math. 7, 164 (2006)

    MathSciNetĀ  Google ScholarĀ 

  42. Zheng, L.: An elementary proof for two basic alternating series. Am. Math. Mon. 109, 187ā€“188 (2002)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  43. Zhu, L.: On Youngā€™s inequality. Int. J. Math. Educ. Sci. Technol. 35, 601ā€“603 (2004)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mercer, P.R. (2014). Techniques of Integration. In: More Calculus of a Single Variable. Undergraduate Texts in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1926-0_11

Download citation

Publish with us

Policies and ethics