Skip to main content

Citrus Transformation Using Juvenile Tissue Explants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1224))

Abstract

The most frequently used method for production of citrus transgenic plants is via Agrobacterium-mediated transformation of tissues found on explants obtained from juvenile seedlings. Within the last decade and especially within the last 5–6 years, this robust method was employed to produce thousands of transgenic plants. With the newly applied screening methods that allow easier and faster detection of transgenic shoots, estimates of transformation rate for some cultivars have gone up making this approach even more attractive. Although adjustments have to be made regarding the (varietal) source of the starting material and Agrobacterium strain used in each experiment preformed, the major steps of this procedure have not changed significantly if at all. Transgenic citrus plants produced this way belong to cultivars of rootstocks, sweet oranges, grapefruits, mandarins, limes, and lemons.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotech J 10:597–608

    Article  CAS  Google Scholar 

  2. Febres VJ, Lee RF, Moore GA (2008) Transgenic resistance to Citrus tristeza virus in grapefruit. Plant Cell Rep 27:93–104

    Article  CAS  PubMed  Google Scholar 

  3. Reyes CA, Zanek MC, Velazquez K, Costa N, Plata MI, Garcia ML (2011) Generation of sweet orange transgenic lines and evaluation of Citrus psorosis virus-derived resistance against Psorosis A and Psorosis B. J Phytopath 159:531–537

    Article  CAS  Google Scholar 

  4. Zhang X, Francis MI, Dawson WO, Graham JH, Orbović V, Triplett EW, Mou Z (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128:91–100

    Article  CAS  Google Scholar 

  5. Sendin LN, Filippone MP, Orce IG, Rigano L, Enrique R, Peña L, Vojnov AA, Marano MR, Castagnaro AP (2012) Transient expression of pepper Bs2 gene in Citrus limon as an approach to evaluate its utility for management of citrus canker disease. Plant Pathol 61:648–657

    Article  CAS  Google Scholar 

  6. Mendes BMJ, Cardoso SC, Boscariol-Camargo RL, Cruz RB, Mourao FAA, Bergamin A (2010) Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathol 59:68–75

    Article  CAS  Google Scholar 

  7. Barbosa-Mendes JM, Mourao FDA, Bergamin A, Harakava R, Beer SV, Mendes BMJ (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hort 122:109–115

    Article  CAS  Google Scholar 

  8. Mondal SN, Dutt M, Grosser JW, Dewdney MM (2012) Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoe fawcettii. Eur J Plant Pathol 133:391–404

    Article  CAS  Google Scholar 

  9. Molinari HBC, Marur CJ, Bespalhok JC, Kobayashi AK, Pileggi M, Leite RP, Pereira LFP, Vierira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  10. de Campos MKF, de Carvalho K, de Souza FS, Marur CJ, Pereira LFP, Bespalhok JC, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Article  Google Scholar 

  11. Fu X, Khan EU, Hu S, Fan Q, Liu J (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74:106–113

    Article  CAS  Google Scholar 

  12. Fagoaga C, Tadeo FR, Iglesias DJ, Huerta L, Lliso I, Vidal AM, Talon M, Navarro L, Garcia-Martinez JL, Peña L (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58:1407–1420

    Article  CAS  PubMed  Google Scholar 

  13. Pasquali G, Orbović V, Grosser JW (2009) Transgenic grapefruit plants expressing the PAPETALA3-IPT gp gene exhibit altered expression of PR genes. PCTOC 97:215–223

    Article  CAS  Google Scholar 

  14. Peña L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotech 19:263–267

    Article  Google Scholar 

  15. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  CAS  PubMed  Google Scholar 

  16. Koca U, Berhow MA, Febres VJ, Champ KI, Carrillo-Mendoza O, Moore GA (2009) Decreasing unpalatable flavonoid components in Citrus: the effect of transformation construct. Physiol Plantarum 137:101–114

    Article  CAS  Google Scholar 

  17. Al Bachchu MA, Jin SB, Park JW, Boo KH, Sun HJ, Kim YW, Lee HY, Riu KZ, Kim JH (2011) Functional expression of Miraculin, a taste-modifying protein, in transgenic Miyagawa Wase Satsuma mandarin (Citrus unshiu Marc.). J Korean Soc Appl Biol Chem 54:24–29

    Article  CAS  Google Scholar 

  18. Orbović V, Grosser JW (2006) Citrus: sweet orange (Citrus sinensis L. Osbeck ‘Valencia’) and Carrizo citrange [Citrus sinensis (L.) Osbeck x Poncirus trifoliata (L.) Raf.]. In: Wang K (ed) Agrobacterium protocol, Methods in molecular biology. Humana Press Inc, Totowa, NJ, pp 177–189

    Google Scholar 

  19. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  20. Mankin SL, Thompson WL (2001) New green fluorescent protein genes for plant transformation: intron-containing, ER-localized, and soluble-modified. Plant Mol Biol Rep 19:13–26

    Article  CAS  Google Scholar 

  21. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–213

    Article  CAS  Google Scholar 

  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays and tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  23. Murashige T, Tucker DPH (1969) Growth factor requirements of Citrus tissue culture. Proc 1st Int Citrus Simp 3:1155–1161

    CAS  Google Scholar 

  24. Sambrook J, Russell DW (2001) Molecular cloning - a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  25. Walkerpeach CR, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells: cointegrate and binary vector systems. In: Plant molecular biology manual, vol B1. Kluwer Academic Publishers, Belgium, pp 1–19

    Google Scholar 

  26. Yu C, Shu H, Chen C, Deng Z, Ling P, Gmitter FG (2002) Factors affecting the efficiency of Agrobacterium-mediated transformation in sweet orange and citrange. Plant Cell Tissue Organ Cult 71:147–155

    Article  CAS  Google Scholar 

  27. Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in region of pTiBo542 outside of T-DNA. J Bacteriol 168:1283–1290

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis library in Agrobacterium. Nat Biotechnol 9:963–967

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Orbović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Orbović, V., Grosser, J.W. (2015). Citrus Transformation Using Juvenile Tissue Explants. In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1224. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1658-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1658-0_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1657-3

  • Online ISBN: 978-1-4939-1658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics