Skip to main content

The Role of Peri-synaptic GABA Receptors After Stroke

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC,volume 27))

Abstract

An attempt to find pharmacological therapies to treat stroke patients and minimize the extent of cell death has seen the failure of dozens of clinical trials. As a result, stroke/cerebral ischemia remains the second leading cause of death and is the leading cause of lasting adult disability worldwide. Stroke-induced cell death occurs due to an excess release of glutamate. As a consequence to this, a compensatory increased release of γ-aminobutyric acid (GABA) occurs that results in the subsequent internalization of synaptic GABAA receptors and spillover onto peri-synaptic/extrasynaptic GABAA receptors, resulting in an increase in tonic inhibition. Recent studies show that the brain can engage in a limited process of neural repair after stroke. Changes in cortical sensory and motor maps and alterations in axonal structure are dependent on patterned neuronal activity. The central cellular process in these events is alteration in neuronal response to incoming inputs—manipulations that increase neuronal firing to a given input are likely to induce changes in neuronal structure and alterations in cortical maps. It has been assumed that changes in neuronal excitability underlie processes of neural repair and remapping of cortical sensory and motor representations. Indeed, recent evidence suggests that local inhibitory and excitatory currents are altered after stroke and modulation of these networks to enhance excitability during the repair phase can facilitate functional recovery after stroke. More specifically, dampening tonic GABA inhibition from 3 days poststroke can afford an early and robust improvement in functional recovery after stroke. Further, recent data also suggest that boosting tonic GABA inhibition early after a stroke can afford significant protection and minimize the extent of neuronal cell loss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alakuijala A, Alakuijala J, Pasternack M (2006) Evidence for a functional role of GABA receptors in the rat mature hippocampus. Eur J Neurosci 23(2):514–520

    PubMed  Google Scholar 

  • Alicke B, Schwartz-Bloom RD (1995) Rapid down-regulation of GABAA receptors in the gerbil hippocampus following transient cerebral ischemia. J Neurochem 65(6):2808–2811

    PubMed  CAS  Google Scholar 

  • Allen NJ, Rossi DJ, Attwell D (2004) Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci 24(15):3837–3849

    PubMed  CAS  Google Scholar 

  • Alonso-Alonso M, Fregni F, Pascual-Leone A (2007) Brain stimulation in poststroke rehabilitation. Cerebrovasc Dis 24(Suppl 1):157–166

    PubMed  Google Scholar 

  • Atack JR, Bayley PJ, Seabrook GR, Wafford KA, McKernan RM, Dawson GR (2006) L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for alpha5-containing GABAA receptors. Neuropharmacology 51(6):1023–1029

    PubMed  CAS  Google Scholar 

  • Barrera NP, Betts J, You H, Henderson RM, Martin IL, Dunn SM et al (2008) Atomic force microscopy reveals the stoichiometry and subunit arrangement of the alpha4beta3delta GABA(A) receptor. Mol Pharmacol 73(3):960–967

    PubMed  CAS  Google Scholar 

  • Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T (2007) Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb Cortex 17(9):2094–2107

    PubMed  Google Scholar 

  • Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 29(41):12757–12763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated ‘menage a trois’. Trends Neurosci 20(11):523–529

    PubMed  CAS  Google Scholar 

  • Berends HI, Nijlant JM, Movig KL, Van Putten MJ, Jannink MJ, Ijzerman MJ (2009) The clinical use of drugs influencing neurotransmitters in the brain to promote motor recovery after stroke; a Cochrane systematic review. Eur J Phys Rehabil Med 45(4):621–630

    PubMed  CAS  Google Scholar 

  • Bianchi MT, Macdonald RL (2003) Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci 23(34):10934–10943

    PubMed  CAS  Google Scholar 

  • Biber K, Laurie DJ, Berthele A, Sommer B, Tolle TR, Gebicke-Harter PJ et al (1999) Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72(4):1671–1680

    PubMed  CAS  Google Scholar 

  • Borghese CM, Harris RA (2007) Studies of ethanol actions on recombinant delta-containing gamma-aminobutyric acid type A receptors yield contradictory results. Alcohol 41(3):155–162

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19

    PubMed  CAS  Google Scholar 

  • Bright DP, Renzi M, Bartram J, McGee TP, MacKenzie G, Hosie AM et al (2011) Profound desensitization by ambient GABA limits activation of delta-containing GABAA receptors during spillover. J Neurosci 31(2):753–763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH (2009) In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci 29(6):1719–1734

    PubMed  CAS  Google Scholar 

  • Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34(6):1553–1566

    PubMed  Google Scholar 

  • Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59(5):735–742

    PubMed  CAS  Google Scholar 

  • Carmichael ST (2008) Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke 39(4):1380–1388

    PubMed  PubMed Central  Google Scholar 

  • Carmichael ST (2010) Targets for neural repair therapies after stroke. Stroke 41(10 Suppl):S124–S126

    PubMed  PubMed Central  Google Scholar 

  • Carmichael ST (2012) Brain excitability in stroke: the yin and yang of stroke progression. Arch Neurol 69(2):161–167

    PubMed  Google Scholar 

  • Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S (2005) Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol 193(2):291–311

    PubMed  CAS  Google Scholar 

  • Cash DJ, Subbarao K (1987) Two desensitization processes of GABA receptor from rat brain. Rapid measurements of chloride ion flux using quench-flow techniques. FEBS Lett 217(1):129–133

    PubMed  CAS  Google Scholar 

  • Chebib M, Johnston GA (1999) The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26(11):937–940

    PubMed  CAS  Google Scholar 

  • Chebib M, Johnston GAR (2000) GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology. J Med Chem 43:1427–1447

    PubMed  CAS  Google Scholar 

  • Chebib M, Johnston GAR, Hanrahan JR (2003) patent PCT Int Appl WO 200345897

    Google Scholar 

  • Chebib M, Gavande N, Wong KY, Park A, Premoli I, Mewett KN et al (2009a) Guanidino acids act as rho 1 GABA(C) receptor antagonists. Neurochem Res 34:1704–1711

    CAS  Google Scholar 

  • Chebib M, Hinton T, Schmid KL, Brinkworth D, Qian H, Matos S et al (2009b) Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 328:448–457

    CAS  Google Scholar 

  • Cicinelli P, Pasqualetti P, Zaccagnini M, Traversa R, Oliveri M, Rossini PM (2003) Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke 34(11):2653–2658

    PubMed  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41

    PubMed  Google Scholar 

  • Clarkson AN (2012a) Modulating post-stroke tonic inhibition offers an extended therapeutic windowfor facilitating functional improvements. 7th international symposium on neuroprotection and neurorepair, The Magdeburg Meeting Series, Potsdam, Germany

    Google Scholar 

  • Clarkson AN (2012b) Perisynaptic GABA receptors the overzealous protector. Adv Pharmacol Sci 2012:708428

    Google Scholar 

  • Clarkson AN, Carmichael ST (2009) Cortical excitability and post-stroke recovery. Biochem Soc Trans 37(Pt 6):1412–1414

    PubMed  CAS  Google Scholar 

  • Clarkson AN, Liu H, Rahman R, Jackson DM, Appleton I, Kerr DS (2005) Clomethiazole: mechanisms underlying lasting neuroprotection following hypoxia-ischemia. FASEB J 19(8):1036–1038

    PubMed  CAS  Google Scholar 

  • Clarkson AN, Clarkson J, Jackson DM, Sammut IA (2007) Mitochondrial involvement in transhemispheric diaschisis following hypoxia-ischemia: Clomethiazole-mediated amelioration. Neuroscience 144(2):547–561

    PubMed  CAS  Google Scholar 

  • Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468(7321):305–309

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clarkson AN, Overman JJ, Zhong S, Mueller R, Lynch G, Carmichael ST (2011) AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J Neurosci 31(10):3766–3775

    PubMed  CAS  Google Scholar 

  • Cohen L, Chaaban B, Habert MO (2004) Transient improvement of aphasia with zolpidem. N Engl J Med 350(9):949–950

    PubMed  CAS  Google Scholar 

  • Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C et al (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 22(13):5572–5580

    PubMed  CAS  Google Scholar 

  • Conner JM, Chiba AA, Tuszynski MH (2005) The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 46(2):173–179

    PubMed  CAS  Google Scholar 

  • Cope DW, Wulff P, Oberto A, Aller MI, Capogna M, Ferraguti F et al (2004) Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor gamma2 subunit. Neuropharmacology 47(1):17–34

    PubMed  CAS  Google Scholar 

  • Cope DW, Di Giovanni G, Fyson SJ, Orban G, Errington AC, Lorincz ML et al (2009) Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med 15(12):1392–1398

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cremers T, Ebert B (2007) Plasma and CNS concentrations of Gaboxadol in rats following subcutaneous administration. Eur J Pharmacol 562(1–2):47–52

    PubMed  CAS  Google Scholar 

  • Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L et al (2002) Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc Natl Acad Sci U S A 99(13):8980–8985

    PubMed  CAS  PubMed Central  Google Scholar 

  • D’Hulst C, Atack JR, Kooy RF (2009) The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov Today 14(17–18):866–875

    PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    PubMed  CAS  Google Scholar 

  • Dawson GR, Maubach KA, Collinson N, Cobain M, Everitt BJ, MacLeod AM et al (2006) An inverse agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316(3):1335–1345

    PubMed  CAS  Google Scholar 

  • Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP et al (2003) Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 23(2):510–517

    PubMed  CAS  Google Scholar 

  • Dobkin BH (2004) Strategies for stroke rehabilitation. Lancet Neurol 3(9):528–536

    PubMed  PubMed Central  Google Scholar 

  • Dobkin BH (2008) Training and exercise to drive poststroke recovery. Nat Clin Pract Neurol 4(2):76–85

    PubMed  PubMed Central  Google Scholar 

  • Doengi M, Hirnet D, Coulon P, Pape HC, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca(2 +) signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci U S A 106(41):17570–17575

    PubMed  CAS  PubMed Central  Google Scholar 

  • Domingues AM, Taylor M, Fern R (2010) Glia as transmitter sources and sensors in health and disease. Neurochem Int 57(4):359–366

    PubMed  CAS  Google Scholar 

  • Drasbek KR, Jensen K (2006) THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex 16(8):1134–1141

    PubMed  Google Scholar 

  • Duke RK, Chebib M, Balcar VJ, Allan RD, Mewett KN, Johnston GAR (2000) (+)- and (−)-cis-2-Aminomethylcyclopropanecarboxylic acids show opposite pharmacology at recombinant ρ1 and ρ2 GABAC receptors. J Neurochem 75:2602–2610

    PubMed  CAS  Google Scholar 

  • Eggers ED, Lukasiewicz PD (2006) GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J Physiol London 572(1):215–225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ekema GM, Zheng W, Lu L (2002) Interaction of GABA receptor/channel ρ1 and γ2 subunit. Invest Ophthalmol Vis Sci 43:2326–2333

    PubMed  Google Scholar 

  • Enz R (2001) GABAC receptors: a molecular view. Biol Chem 382:1111–1122

    PubMed  CAS  Google Scholar 

  • Enz R, Cutting GR (1998) Molecular composition of GABAC receptors. Vision Res 38:1431–1441

    PubMed  CAS  Google Scholar 

  • Enz R, Cutting GR (1999) GABAC receptor ρ subunits are heterogeneously expressed in the human CNS and form homo- and heterooligomers with distinct physical properties. Eur J Neurosci 11:41–50

    PubMed  CAS  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6(3):215–229

    PubMed  CAS  Google Scholar 

  • Fletcher EL, Clark MJ, Senior P, Furness JB (2001) Gene expression and localisation of GABAC receptors in neurons of the rat gastrointestinal tract. Neuroscience 107:181–189

    PubMed  CAS  Google Scholar 

  • Floyer-Lea A, Wylezinska M, Kincses T, Matthews PM (2006) Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol 95(3):1639–1644

    PubMed  CAS  Google Scholar 

  • Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH et al (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci U S A 105(30):10338–10343

    PubMed  CAS  PubMed Central  Google Scholar 

  • Froestl W, Gallagher M, Jenkins H, Madrid A, Melcher T, Teichman S et al (2004) SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem Pharmacol 68:1479–1487

    PubMed  CAS  Google Scholar 

  • Gavande N, Yamamoto I, Salam NK, Ai T-H, Burden PM, Johnston GAR et al (2010) Novel cyclic phosphinic acids as GABAC ρ receptor antagonists: design, synthesis, and pharmacology. Med Chem Lett. doi:10.1021/ml1001344

    Google Scholar 

  • Gibbs ME, Johnston GAR (2005) Opposing Roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience 131:567–576

    PubMed  CAS  Google Scholar 

  • Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55(3):363–389

    PubMed  CAS  PubMed Central  Google Scholar 

  • Glykys J, Mody I (2006) Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J Neurophysiol 95(5):2796–2807

    PubMed  CAS  Google Scholar 

  • Glykys J, Mody I (2007a) Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 56(5):763–770

    CAS  Google Scholar 

  • Glykys J, Mody I (2007b) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582(Pt 3):1163–1178

    CAS  Google Scholar 

  • Green AR, Hainsworth AH, Jackson DM (2000) GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology 39(9):1483–1494

    PubMed  CAS  Google Scholar 

  • Hackam AS, Wang T-L, Guggino WB, Cutting GR (1998) Sequences in the amino termini of GABA ρ and GABAA subunits specify their selective interaction in vitro. J Neurochem 70:40–46

    PubMed  CAS  Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238

    PubMed  CAS  Google Scholar 

  • Hanley JG, Koulen P, Bedford F, Gordon-Weeks PR, Moss SJ (1999) The protein MAP-1B links GABA(C) receptors to the cytoskeleton at retinal synapses. Nature 397(6714):66–69

    PubMed  CAS  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031

    PubMed  CAS  Google Scholar 

  • Heja L, Barabas P, Nyitrai G, Kekesi KA, Lasztoczi B, Toke O et al (2009) Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS ONE 4(9):e7153

    PubMed  PubMed Central  Google Scholar 

  • Heja L, Nyitrai G, Kekesi O, Dobolyi A, Szabo P, Fiath R et al (2012) Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol 10:26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hess G, Aizenman CD, Donoghue JP (1996) Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 75(5):1765–1778

    PubMed  CAS  Google Scholar 

  • Huguenard JR, Alger BE (1986) Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. J Neurophysiol 56(1):1–18

    PubMed  CAS  Google Scholar 

  • Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5(8):708–712

    PubMed  Google Scholar 

  • Inglefield JR, Perry JM, Schwartz RD (1995) Postischemic inhibition of GABA reuptake by tiagabine slows neuronal death in the gerbil hippocampus. Hippocampus 5(5):460–468

    PubMed  CAS  Google Scholar 

  • Jacobs KM, Donoghue JP (1991). Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251(4996):944–947

    PubMed  CAS  Google Scholar 

  • Jaenisch N, Witte OW, Frahm C (2010) Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia. Stroke 41(3):e151–e159

    PubMed  CAS  Google Scholar 

  • Johansen FF, Diemer NH (1991) Enhancement of GABA neurotransmission after cerebral ischemia in the rat reduces loss of hippocampal CA1 pyramidal cells. Acta Neurol Scand 84(1):1–6

    PubMed  CAS  Google Scholar 

  • Karim N, Wellendorph P, Absalom N, Bang LH, Jensen ML, Hansen MM et al (2012) Low nanomolar GABA effects at extrasynaptic alpha4beta1/beta3delta GABA(A) receptor subtypes indicate a different binding mode for GABA at these receptors. Biochem Pharmacol 84(4):549–557

    PubMed  CAS  Google Scholar 

  • Keros S, Hablitz JJ (2005) Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol 94(3):2073–2085

    PubMed  CAS  Google Scholar 

  • Kinney GA, Spain WJ (2002) Synaptically evoked GABA transporter currents in neocortical glia. J Neurophysiol 88(6):2899–2908

    PubMed  CAS  Google Scholar 

  • Krakauer JW (2006) Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 19(1):84–90

    PubMed  Google Scholar 

  • Kristensen BW, Noraberg J, Zimmer J (2003) The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures. Brain Res 973(2):303–306

    PubMed  CAS  Google Scholar 

  • Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63(3):585–640

    PubMed  CAS  Google Scholar 

  • Kumar RJ, Chebib M, Hibbs DE, Kim H-L, Johnston GAR, Salam NK et al (2008) Novel γ-aminobutyric acid ρ1 receptor antagonists; synthesis, pharmacological activity and structure-activity relationships. J Med Chem 51:3825–3840

    PubMed  CAS  Google Scholar 

  • Lai SM, Studenski S, Duncan PW, Perera S (2002) Persisting consequences of stroke measured by the stroke impact scale. Stroke 33(7):1840–1844

    PubMed  Google Scholar 

  • Lazar RM, Fitzsimmons BF, Marshall RS, Berman MF, Bustillo MA, Young WL et al (2002) Reemergence of stroke deficits with midazolam challenge. Stroke 33(1):283–285

    PubMed  CAS  Google Scholar 

  • Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS et al (2010) Channel-mediated tonic GABA release from glia. Science 330(6005):790–796

    PubMed  CAS  Google Scholar 

  • Liauw J, Hoang S, Choi M, Eroglu C, Sun GH, Percy M et al (2008) Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metab 28(10):1722–1732

    PubMed  CAS  Google Scholar 

  • Liepert J (2006) Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cogn Behav Neurol 19(1):41–47

    PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    PubMed  CAS  Google Scholar 

  • Lukasiewicz PD (2005) Synaptic mechanisms that shape visual signaling at the inner retina. Prog Brain Res 147:205–218

    PubMed  CAS  Google Scholar 

  • Lukasiewicz PD, Shields CR (1998) Different combinations of GABA(A) and GABA(C) receptors confer distinct temporal properties to retinal synaptic responses. J Neurophysiol 79(6):3157–3167

    PubMed  CAS  Google Scholar 

  • Lukasiewicz PD, Wong ROL (1996) The properties of GABA(c) receptors on ferret retinal bipolar cells. Invest Ophthalmol Vis Sci 37(3):1940–1940

    Google Scholar 

  • Lukasiewicz PD, Eggers ED, Sagdullaev BT, McCall MA (2004) GABA(C) receptor-mediated inhibition in the retina. Vision Res 44(28):3289–3296

    PubMed  CAS  Google Scholar 

  • Lyden P, Shuaib A, Ng K, Levin K, Atkinson RP, Rajput A et al (2002) Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results. Stroke 33(1):122–128

    PubMed  CAS  Google Scholar 

  • MacDonald E, Van der Lee H, Pocock D, Cole C, Thomas N, VandenBerg PM et al (2007) A novel phosphodiesterase type 4 inhibitor, HT-0712, enhances rehabilitation-dependent motor recovery and cortical reorganization after focal cortical ischemia. Neurorehabil Neural Repair 21(6):486–496

    PubMed  Google Scholar 

  • Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602

    PubMed  CAS  Google Scholar 

  • Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS (2009) Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 109:S139–S144

    Google Scholar 

  • Madsen KK, Ebert B, Clausen RP, Krogsgaard-Larsen P, Schousboe A, White HS (2011) Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABA(A) receptor agonist gaboxadol. J Pharmacol Exp Ther 338(1):214–219

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maldonado MA, Allred RP, Felthauser EL, Jones TA (2008) Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats. Neurorehabil Neural Repair 22(3):250–261

    PubMed  PubMed Central  Google Scholar 

  • Martinez-Delgado G, Reyes-Haro D, Espino-Saldana AE, Rosas-Arellano A, Petriz A, Juarez-Mercado P et al (2011) Dynamics of GABArho2 receptors in retinal bipolar neurons and cerebellar astrocytes. Neuroreport 22(1):4–9

    PubMed  CAS  Google Scholar 

  • McCarthy MM, Auger AP, Perrot-Sinal TS (2002) Getting excited about GABA and sex differences in the brain. Trends Neurosci 25(6):307–312

    PubMed  CAS  Google Scholar 

  • McKernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19(4):139–143

    PubMed  CAS  Google Scholar 

  • Meera P, Wallner M, Otis TS (2011) Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABA(A) receptors. J Neurophysiol 106(4):2057–2064

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mertens S, Benke D, Mohler H (1993) GABAA receptor populations with novel subunit combinations and drug binding profiles identified in brain by alpha 5- and delta-subunit-specific immunopurification. J Biol Chem 268(8):5965–5573

    PubMed  CAS  Google Scholar 

  • Milligan CJ, Buckley NJ, Garret M, Deuchars J, Deuchars SA (2004) Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons. J Neurosci 24:7241–7250

    PubMed  CAS  Google Scholar 

  • Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16(19):6255–6264

    PubMed  CAS  Google Scholar 

  • Mitchell SJ, Silver RA (2003) Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38(3):433–445

    PubMed  CAS  Google Scholar 

  • Mody I (2001) Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res 26(8–9):907–913

    PubMed  CAS  Google Scholar 

  • Murata Y, Woodward RM, Miledi R, Overman LE (1996) The first selective antagonists for a GABAC receptor. Bioorg Med Chem Lett 6:2073–2076

    CAS  Google Scholar 

  • Ng YS, Stein J, Ning M, Black-Schaffer RM (2007) Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke 38(8):2309–2314

    PubMed  Google Scholar 

  • Ng CK, Kim HL, Gavande N, Yamamoto I, Kumar RJ, Mewett KN et al (2011) Medicinal chemistry of rho GABAC receptors. Future Med Chem 3(2):197–209

    PubMed  CAS  Google Scholar 

  • Nicotera P, Lipton SA (1999) Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab 19(6):583–591

    PubMed  CAS  Google Scholar 

  • Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16(6):638–644

    PubMed  CAS  Google Scholar 

  • Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26(50):13007–13016

    PubMed  CAS  Google Scholar 

  • Olsen RW, Sieghart W (2008). International union of pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60(3):243–260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56(1):141–148

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    PubMed  CAS  Google Scholar 

  • Qian H, Pan Y (2002) Co-assembly of GABA ρ subunits with the GABAA receptor γ2 subunit cloned from white perch retina. Mol Brain Res 103:62–70

    PubMed  CAS  Google Scholar 

  • Qian H, Ripps H (1999) Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA ρ- and γ2-Subunits. Proc R Soc (Lond B) 266:2419–2425

    CAS  Google Scholar 

  • Qian H, Dowling JE, Ripps H (1998) Molecular and pharmacological properties of GABA-r subunits from white perch retina. J Neurobiol 37:305–320

    PubMed  CAS  Google Scholar 

  • Que M, Schiene K, Witte OW, Zilles K (1999) Widespread up-regulation of N-methyl-D-aspartate receptors after focal photothrombotic lesion in rat brain. Neurosci Lett 273(2):77–80

    PubMed  CAS  Google Scholar 

  • Ragozzino D, Woodward RM, Murata Y, Eusebi F, Overman LE, Miledi R (1996) Design and in vitro pharmacology of a selective γ-aminobutyric acidC receptor antagonist. Mol Pharmacol 50:1024–1030

    PubMed  CAS  Google Scholar 

  • Redecker C, Luhmann HJ, Hagemann G, Fritschy JM, Witte OW (2000) Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J Neurosci 20(13):5045–5053

    PubMed  CAS  Google Scholar 

  • Redecker C, Wang W, Fritschy JM, Witte OW (2002) Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. J Cereb Blood Flow Metab 22(12):1463–1475

    PubMed  CAS  Google Scholar 

  • Rozzo A, Armellin M, Franzot J, Chiaruttini C, Nistri A, Tongiorgi E (2002) Expression and dendritic mRNA localization of GABAC receptor ρ1 and ρ2 subunits in developing rat brain and spinal cord. Eur J Neurosci 15:1747–1758

    PubMed  Google Scholar 

  • Saxena NC, Macdonald RL (1994) Assembly of GABAA receptor subunits: role of the delta subunit. J Neurosci 14(11 Pt 2):7077–7086

    PubMed  CAS  Google Scholar 

  • Schlicker K, McCall MA, Schmidt M (2009) GABAC receptor-mediated inhibition Is altered but not eliminated in the superior colliculus of GABACρ1 knockout mice. J Neurophysiol 101:2947–2983

    Google Scholar 

  • Schmidt S, Redecker C, Bruehl C, Witte OW (2010). Age-related decline of functional inhibition in rat cortex. Neurobiol Aging 31(3):504–511

    PubMed  CAS  Google Scholar 

  • Schmidt S, Bruehl C, Frahm C, Redecker C, Witte OW (2012) Age dependence of excitatory-inhibitory balance following stroke. Neurobiol Aging 33(7):1356–1363

    PubMed  CAS  Google Scholar 

  • Schousboe A, Madsen KK, White HS (2011) GABA transport inhibitors and seizure protection: the past and future. Future Med Chem 3(2):183–187

    PubMed  CAS  Google Scholar 

  • Schwartz RD, Yu X, Katzman MR, Hayden-Hixson DM, Perry JM (1995) Diazepam, given postischemia, protects selectively vulnerable neurons in the rat hippocampus and striatum. J Neurosci 15(1 Pt 2):529–539

    PubMed  CAS  Google Scholar 

  • Schwartz-Bloom RD, Sah R (2001) Gamma-aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem 77(2):353–371

    PubMed  CAS  Google Scholar 

  • Schwartz-Bloom RD, Miller KA, Evenson DA, Crain BJ, Nadler JV (2000) Benzodiazepines protect hippocampal neurons from degeneration after transient cerebral ischemia: an ultrastructural study. Neuroscience 98(3):471–484

    PubMed  CAS  Google Scholar 

  • Scimemi A, Semyanov A, Sperk G, Kullmann DM, Walker MC (2005) Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci 25(43):10016–10024

    PubMed  CAS  Google Scholar 

  • Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA (2008) The mechanism of a neurotransmitter:sodium symporter-inward release of Na + and substrate is triggered by substrate in a second binding site. Mol Cell 30(6):667–677

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sieghart W (1995) Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47(2):181–234

    PubMed  CAS  Google Scholar 

  • Stinear JW, Byblow WD (2002) Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements. J Physiol 543(Pt 1):307–316

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stinear CM, Coxon JP, Byblow WD (2009) Primary motor cortex and movement prevention: where Stop meets Go. Neurosci Biobehav Rev 33(5):662–673

    PubMed  Google Scholar 

  • Stone RA, Liu J, Sugimoto R, Capehart C, Zhu X, Pendrak K (2003) GABA, experimental myopia, and ocular growth in chick. Invest Ophthalmol Vis Sci 44:3933–3946

    PubMed  Google Scholar 

  • Stroemer RP, Kent TA, Hulsebosch CE (1998) Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats. Stroke 29(11):2381–2393; discussion 93–95

    PubMed  CAS  Google Scholar 

  • Sun C, Sieghart W, Kapur J (2004) Distribution of alpha1, alpha4, gamma2, and delta subunits of GABAA receptors in hippocampal granule cells. Brain Res 1029(2):207–216

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sundstrom-Poromaa I, Smith DH, Gong QH, Sabado TN, Li X, Light A et al (2002) Hormonally regulated alpha(4)beta(2)delta GABA(A) receptors are a target for alcohol. Nat Neurosci 5(8):721–722

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tehrani MH, Barnes EM Jr (1991) Agonist-dependent internalization of gamma-aminobutyric acidA/benzodiazepine receptors in chick cortical neurons. J Neurochem 57(4):1307–1312

    PubMed  CAS  Google Scholar 

  • van der Zijden JP, van Eijsden P, de Graaf RA, Dijkhuizen RM (2008) 1H/13C MR spectroscopic imaging of regionally specific metabolic alterations after experimental stroke. Brain 131(Pt 8):2209–2219

    PubMed  Google Scholar 

  • Velez-Fort M, Audinat E, Angulo MC (2012) Central role of GABA in neuron-glia interactions. Neuroscientist 18(3):237–250

    PubMed  CAS  Google Scholar 

  • Wafford KA, van Niel MB, Ma QP, Horridge E, Herd MB, Peden DR et al (2009) Novel compounds selectively enhance delta subunit containing GABA A receptors and increase tonic currents in thalamus. Neuropharmacology 56(1):182–189

    PubMed  CAS  Google Scholar 

  • Walker MC, Semyanov A (2008) Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl Cell Differ 44:29–48

    PubMed  CAS  Google Scholar 

  • Wang T-L, Guggino WB, Cutting GR (1994) A novel y-aminobutyric acid receptor subunit (r2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in Xenopus oocytes. J Neurosci 14:6524–6531

    PubMed  CAS  Google Scholar 

  • Whiting PJ (2003a) The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel 6(5):648–657

    CAS  Google Scholar 

  • Whiting PJ (2003b) GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today 8(10):445–450

    CAS  Google Scholar 

  • Wittenberg GF, Schaechter JD (2009) The neural basis of constraint-induced movement therapy. Curr Opin Neurol 22:582–588

    PubMed  Google Scholar 

  • Wu Y, Wang W, Richerson GB (2006) The transmembrane sodium gradient influences ambient GABA concentration by altering the equilibrium of GABA transporters. J Neurophysiol 96(5):2425–2436

    PubMed  CAS  Google Scholar 

  • Xu JY, Yang B, Sastry BR (2009) The involvement of GABA-C receptors in paired-pulse depression of inhibitory postsynaptic currents in rat hippocampal CA1 pyramidal neurons. Exp Neurol 216(1):243–246

    PubMed  CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na +/Cl-dependent neurotransmitter transporters. Nature 437(7056):215–223

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8(5):491–500

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Pan Z-H, Awobuluyi M, Lipton SA (2001) Structure and function of GABAC receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 22:121–132

    PubMed  CAS  Google Scholar 

  • Zhu XM, Ong WY (2004a) A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. J Neurocytol 33(2):233–240

    CAS  Google Scholar 

  • Zhu XM, Ong WY (2004b) Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J Neurosci Res 77(3):402–409

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Clarkson .

Editor information

Editors and Affiliations

Conclusions

Conclusions

Therapies that promote functional recovery after stroke are limited to physical rehabilitation measures. While specific measures, such as constraint-induced therapies, promote recovery of motor function, no pharmacological therapies are available that aid in recovery. Functional recovery after stroke follows psychological learning rules (Krakauer 2006) that indicate learning and memory principles may underlie behavioral recovery. The idea that certain aspects of learning and memory rules and changes in neuronal excitability can alter the profile of recovery after a stroke has led to ad hoc attempts to treat patients with any available drug known to stimulate learning and memory, such as amphetamine, dopamine agonists, and methylphenidate, to name just a few. As these compounds work through multiple receptor systems in the brain and were designed to treat neurological conditions other than being a neurorehabilitative aid, they have failed to translate into the clinic (Berends et al. 2009). At the cellular level, learning and memory principles are mediated by specific excitatory neuronal responses, such as LTP, and are potentiated by drugs that facilitate aspects of excitatory neuronal signaling (Walker and Semyanov 2008), such as tonic GABAAR antagonists (Glykys and Mody 2007a). Recent data show that stroke alters the balance of excitatory and inhibitory inputs to neurons in the peri-infarct cortex, by increasing inhibitory tone . This altered excitatory balance occurs through a decrease in the normal cellular uptake of GABA. Dampening GABA-mediated tonic inhibition restores the excitatory/inhibitory balance in peri-infarct motor cortex ex vivo, and promotes recovery of motor function in vivo (see Fig. 9.6). These effects occur through blockade of α5- or δ-containing GABAARs. These data indicate a novel role for tonic GABAAR function in promoting poststroke recovery most likely via cortical disinhibition (Jacobs and Donoghue 1991; Stinear et al. 2009; Stinear and Byblow 2002) and suggest a new avenue for pharmacological treatment of neurorehabilitation in stroke. This early effect on stroke recovery opens the possibility for treatments that block tonic GABA signaling and may be used in conjunction with later-acting stroke repair therapies in a combinatorial manner. More generally, tonic GABA signaling has a biphasic role in stroke. Early tonic GABA signaling limits stroke size, later tonic GABA signaling limits stroke recovery. These data identify a promising molecular system for future stroke recovery therapies and implicate molecular memory systems as likely key players in recovery from stroke.

Fig. 9.6
figure 6

Schematic summary of key changes in tonic GABA and stroke recovery. Stroke increases peri-infarct GABA by reducing the level of the GABA transporter, GAT-3/4, indicated by lighter shading in a subset of GAT-3/4 (blue pinwheels). The function and the level of GAT-1 are unaltered (orange pinwheels). Due to different subunit-associated properties, extrasynaptic GABAARs (green) mediate a tonic form of inhibition that is distinct from the phasic form mediated by synaptic GABAARs (orange).Tonic inhibitory currents in peri-infarct pyramidal neurons (red trace) are increased compared to control neurons (blue trace). Reducing tonic inhibition with a selective α5-GABAAR inverse agonist (L655,708) reverses the increase in tonic inhibition and improves behavioral recovery in forelimb motor control after stroke

Acknowledgments

This manuscript was completed during tenure of a Sir Charles Hercus Fellowship from the Health Research Council of New Zealand.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clarkson, A., Chebib, M. (2014). The Role of Peri-synaptic GABA Receptors After Stroke. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_9

Download citation

Publish with us

Policies and ethics