Skip to main content

Functional Assay Using Lectin Gene Targeting Technologies (Over-Expression)

  • Protocol
  • First Online:
Lectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1200))

  • 3453 Accesses

Abstract

Function of lectin depends on its amino acid sequence of carbohydrate-recognition domain (CRD), conformation, and extracellular/intracellular localization. Altering lectin gene expression by over-expression or knockdown is a powerful tool for analyzing its cellular function. Here, we describe a method of lectin gene over-expression, taking a C-type lectin, mannan-binding protein (MBP), as an example. Carbohydrate-binding ability of MBP, its subcellular localization, and functional co-localization with ligand glycoprotein are assayed comparing with an inactive mutant MBP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prelich G (2012) Gene overexpression: uses, mechanisms, and interpretation. Genetics 190:841–854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222

    Article  PubMed  CAS  Google Scholar 

  3. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  PubMed  CAS  Google Scholar 

  4. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  PubMed  CAS  Google Scholar 

  5. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Cho SW, Kim S, Kim JM et al (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  PubMed  CAS  Google Scholar 

  7. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Ma Y, Shida H, Kawasaki T (1997) Functional expression of human mannan-binding proteins (MBPs) in human hepatoma cell lines infected by recombinant vaccinia virus: post-translational modification, molecular assembly, and differentiation of serum and liver MBP. J Biochem 122:810–818

    Article  PubMed  CAS  Google Scholar 

  9. Kawasaki N, Kawasaki T, Yamashina I (1983) Isolation and characterization of a mannan-binding protein from human serum. J Biochem 94:937–947

    PubMed  CAS  Google Scholar 

  10. Mori K, Kawasaki T, Yamashina I (1984) Subcellular distribution of the mannan-binding protein and its endogenous inhibitors in rat liver. Arch Biochem Biophys 232:223–233

    Article  PubMed  CAS  Google Scholar 

  11. Mori K, Kawasaki T, Yamashina I (1988) Isolation and characterization of endogenous ligands for liver mannan-binding protein. Arch Biochem Biophys 264:647–656

    Article  PubMed  CAS  Google Scholar 

  12. Turner MW (2003) The role of mannose-binding lectin in health and disease. Mol Immunol 40:423–429

    Article  PubMed  CAS  Google Scholar 

  13. Ma Y, Uemura K, Oka S et al (1999) Antitumor activity of mannan-binding protein in vivo as revealed by a virus expression system: mannan-binding protein-dependent cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 96:371–375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Ezekowitz RA, Kuhlman M, Groopman JE et al (1989) A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med 169:185–196

    Article  PubMed  CAS  Google Scholar 

  15. Nonaka M, Ma BY, Ohtani M et al (2007) Subcellular localization and physiological significance of intracellular mannan-binding protein. J Biol Chem 282:17908–17920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Nonaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nonaka, M., Kawasaki, T. (2014). Functional Assay Using Lectin Gene Targeting Technologies (Over-Expression). In: Hirabayashi, J. (eds) Lectins. Methods in Molecular Biology, vol 1200. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1292-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1292-6_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1291-9

  • Online ISBN: 978-1-4939-1292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics