Skip to main content

Analysis of Cerebral Angiogenesis in Human Glioblastomas

  • Protocol
Book cover Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

The formation of new blood vessels is a major hallmark in the process of malignant transformation in human glioblastomas. In diffusely infiltrating gliomas, enhanced angiogenesis is associated with decreased patient survival rates and therefore serves as a central diagnostic criterion according to the WHO (World Health Organization) classification of tumors of the central nervous system (CNS). However, the assessment of what a newly built blood vessel really is and how the extent of glioma-associated angiogenesis can be estimated in vivo is often a highly subjective procedure with imprecise criteria depending on the experience of the neuropathologist. The increased interest in translational medicine and anti-angiogenic treatment strategies implies that basic researchers in glioma angiogenesis are frequently asked to validate their findings in patient material to provide evidence for potential clinical relevance of their results. Therefore, more precise methods and measurement techniques are needed to objectively measure the extent of angiogenesis in human glioblastoma samples. The present synopsis provides an overview about morphological methods to assess the formation of new blood vessels by quantitative imaging using histological and immunohistochemical marker profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson DR, O’Neill BP (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107(2):359–364

    Article  CAS  PubMed  Google Scholar 

  2. Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124(6):763–775

    Article  PubMed Central  PubMed  Google Scholar 

  3. Birner P, Piribauer M, Fischer I, Gatterbauer B, Marosi C, Ambros PF, Ambros IM, Bredel M, Oberhuber G, Rössler K, Budka H, Harris AL, Hainfellner JA (2003) Vascular patterns in glioblastoma influence clinical outcome and associate with variable expression of angiogenic proteins: evidence for distinct angiogenic subtypes. Brain Pathol 13(2):133–143

    Article  CAS  PubMed  Google Scholar 

  4. Preusser M, Heinzl H, Gelpi E, Schonegger K, Haberler C, Birner P, Marosi C, Hegi M, Gorlia T, Hainfellner JA, European Organization for Research and Treatment of Cancer Brain Tumor Group (2006) Histopathologic assessment of hot-spot microvessel density and vascular patterns in glioblastoma: poor observer agreement limits clinical utility as prognostic factors: a translational research project of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Cancer 107(1):162–170

    Article  PubMed  Google Scholar 

  5. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60(5):1388–1393

    CAS  PubMed  Google Scholar 

  6. Mulisch M, Welsch U (2010) Romeis. Mikroskopische technik, 18th edn. Spektrum, Heidelberg

    Google Scholar 

  7. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  CAS  PubMed  Google Scholar 

  8. Yoshii Y, Sugiyama K (1998) Intercapillary distance in the proliferating area of human glioma. Cancer Res 48(10):2938–2941

    Google Scholar 

  9. Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 33(8):845–853

    Article  CAS  PubMed  Google Scholar 

  10. Nicosia RF, Madri JA (1987) The microvascular extracellular matrix. Developmental changes during angiogenesis in the aortic ring-plasma clot model. Am J Pathol 128:78–90

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Yao Y, Kubota T, Takeuchi H, Sato K (2005) Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors: comparison with an anti-CD31 monoclonal antibody. Neuropathology 25(3):201–206

    Article  PubMed  Google Scholar 

  12. Sie M, Wagemakers M, Molema G, Mooij JJ, de Bont ES, den Dunnen WF (2009) The angiopoietin 1/angiopoietin 2 balance as a prognostic marker in primary glioblastoma multiforme. J Neurosurg 110(1):147–155

    Article  PubMed  Google Scholar 

  13. Galloway M (2010) CD34 expression in glioblastoma and giant cell glioblastoma. Clin Neuropathol 29(2):89–93

    Article  CAS  PubMed  Google Scholar 

  14. Siemerink MJ, Klaassen I, Vogels IM, Griffioen AW, Van Noorden CJ, Schlingemann RO (2012) CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 15(1):151–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Abdulrauf SI, Edvardsen K, Ho KL, Yang XY, Rock JP, Rosenblum ML (1998) Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J Neurosurg 88(3):513–520

    Article  CAS  PubMed  Google Scholar 

  16. Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77(2):362–372

    Article  CAS  PubMed  Google Scholar 

  17. Essock-Burns E, Phillips JJ, Molinaro AM, Lupo JM, Cha S, Chang SM, Nelson SJ (2013) Comparison of DSC-MRI post-processing techniques in predicting microvascular histopathology in patients newly diagnosed with GBM. J Magn Reson Imaging 38(2):388–400. doi:10.1002/jmri.23982

    Article  PubMed Central  PubMed  Google Scholar 

  18. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG (2005) The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118(Pt 4):771–780

    Article  CAS  PubMed  Google Scholar 

  19. Stratmann A, Risau W, Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153(5):1459–1466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226

    Article  PubMed  Google Scholar 

  21. Chan AS, Leung SY, Wong MP, Yuen ST, Cheung N, Fan YW, Chung LP (1998) Expression of vascular endothelial growth factor and its receptors in the anaplastic progression of astrocytoma, oligodendroglioma, and ependymoma. Am J Surg Pathol 22(7):816–826

    Article  CAS  PubMed  Google Scholar 

  22. Plate KH, Breier G, Weich HA, Mennel HD, Risau W (1994) Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59(4):520–529

    Article  CAS  PubMed  Google Scholar 

  23. Lamszus K, Ulbricht U, Matschke J, Brockmann MA, Fillbrandt R, Westphal M (2003) Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. Clin Cancer Res 9(4):1399–1405

    CAS  PubMed  Google Scholar 

  24. de Groot JF, Piao Y, Tran H, Gilbert M, Wu HK, Liu J, Bekele BN, Cloughesy T, Mehta M, Robins HI, Lassman A, DeAngelis L, Camphausen K, Chen A, Yung WK, Prados M, Wen PY, Heymach JV (2011) Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept. Clin Cancer Res 17(14):4872–4881

    Article  PubMed Central  PubMed  Google Scholar 

  25. Steiner HH, Karcher S, Mueller MM, Nalbantis E, Kunze S, Herold-Mende CJ (2004) Autocrine pathways of the vascular endothelial growth factor (VEGF) in glioblastoma multiforme: clinical relevance of radiation-induced increase of VEGF levels. J Neurooncol 66(1–2):129–138

    Article  PubMed  Google Scholar 

  26. Knizetova P, Ehrmann J, Hlobilkova A, Vancova I, Kalita O, Kolar Z, Bartek J (2008) Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle 7(16):2553–2561

    Article  CAS  PubMed  Google Scholar 

  27. Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K, Awane M, Sakai Y, Takabayashi A, Alitalo K, Yamaoka Y, Nishikawa SI (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96(2):546–553

    CAS  PubMed  Google Scholar 

  28. Jenny B, Harrison JA, Baetens D, Tille JC, Burkhardt K, Mottaz H, Kiss JZ, Dietrich PY, De Tribolet N, Pizzolato GP, Pepper MS (2006) Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. J Pathol 209(1):34–43

    Article  CAS  PubMed  Google Scholar 

  29. Sica G, Lama G, Anile C, Geloso MC, La Torre G, De Bonis P, Maira G, Lauriola L, Jhanwar-Uniyal M, Mangiola A (2011) Assessment of angiogenesis by CD105 and nestin expression in peritumor tissue of glioblastoma. Int J Oncol 38(1):41–49

    PubMed  Google Scholar 

  30. Holley JE, Newcombe J, Whatmore JL, Gutowski NJ (2010) Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neurosci Lett 470(1):65–70

    Article  CAS  PubMed  Google Scholar 

  31. Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ (1995) Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol 54(3):304–310

    Article  CAS  PubMed  Google Scholar 

  32. Sato S, Sato Y, Hatakeyama K, Marutsuka K, Yamashita A, Takeshima H, Asada Y (2011) Quantitative analysis of vessels with smooth muscle layer in astrocytic tumors: correlation with histological grade and prognostic significance. Histol Histopathol 26(4):497–504

    PubMed  Google Scholar 

  33. Takeuchi H, Hashimoto N, Kitai R, Kubota T, Kikuta K (2010) Proliferation of vascular smooth muscle cells in glioblastoma multiforme. J Neurosurg 113(2):218–224

    Article  PubMed  Google Scholar 

  34. Ang LC, Perry JR, Bilbao JM, Ozane W, Peschke E, Young B, Nelson N (1996) Postirradiated and nonirradiated gliosarcoma: immunophenotypical profile. Can J Neurol Sci 23(4):251–256

    CAS  PubMed  Google Scholar 

  35. Simonavicius N, Robertson D, Bax DA, Jones C, Huijbers IJ, Isacke CM (2008) Endosialin (CD248) is a marker of tumor-associated pericytes in high-grade glioma. Mod Pathol 21(3):308–315

    Article  CAS  PubMed  Google Scholar 

  36. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  CAS  PubMed  Google Scholar 

  37. Plate KH, Breier G, Farrell CL, Risau W (1992) Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest 67(4):529–534

    CAS  PubMed  Google Scholar 

  38. Haberler C, Gelpi E, Marosi C, Rössler K, Birner P, Budka H, Hainfellner JA (2006) Immunohistochemical analysis of platelet-derived growth factor receptor-alpha, -beta, c-kit, c-abl, and arg proteins in glioblastoma: possible implications for patient selection for imatinib mesylate therapy. J Neurooncol 76(2):105–109

    Article  CAS  PubMed  Google Scholar 

  39. Wesseling P, van der Laak JA, Link M, Teepen HL, Ruiter DJ (1998) Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 29(4):352–358

    Article  CAS  PubMed  Google Scholar 

  40. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20(4):214–220

    Article  CAS  PubMed  Google Scholar 

  41. Hunter JM, Kwan J, Malek-Ahmadi M, Maarouf CL, Kokjohn TA, Belden C, Sabbagh MN, Beach TG, Roher AE (2012) Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer’s disease. PLoS One 7(5):e36893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Brown WR, Moody DM, Thore CR, Challa VR, Anstrom JA (2007) Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J Neurol Sci 257(1–2):62–66

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hu LS, Eschbacher JM, Dueck AC, Heiserman JE, Liu S, Karis JP, Smith KA, Shapiro WR, Pinnaduwage DS, Coons SW, Nakaji P, Debbins J, Feuerstein BG, Baxter LC (2012) Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 33(1):69–76

    Article  CAS  PubMed  Google Scholar 

  44. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94(12):883–893

    Article  PubMed  Google Scholar 

  45. Rajcevic U, Petersen K, Knol JC, Loos M, Bougnaud S, Klychnikov O, Li KW, Pham TV, Wang J, Miletic H, Peng Z, Bjerkvig R, Jimenez CR, Niclou SP (2009) iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-talk in angiogenic compared with invasive glioblastoma phenotype. Mol Cell Proteomics 8(11):2595–2612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Maika Dunst, Tatjana Starzetz, and Cornelia Zachskorn for the histological preparations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mittelbronn, M., Baumgarten, P., Harter, P.N., Plate, K.H. (2014). Analysis of Cerebral Angiogenesis in Human Glioblastomas. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics