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Synonyms

Distance between streams; Datastream distance

Definition

In many applications, it is useful to think of a
datastream as representing a vector or a point
in space. Given two datastreams, along with a
distance or similarity measure, the distance (or
similarity) between the two streams is simply
the distance (respectively, similarity) between the
two points that the datastreams represent. Due to
the enormous amount of data being processed,
datastream algorithms are allowed just a single,
sequential pass over the data; in some settings, the
algorithm may take a few passes. The algorithm
itself must use very little memory, typically poly-
logarithmic in the amount of data, but is allowed
to return approximate answers.

There are two frequently used datastream
models. In the time series model, a vector, �!x , is
simply represented as data items arriving in order
of their indices: x1 , x2 , x3 , : : : . That is, the value
of the ith item of the stream is precisely the value

of the ith coordinate of the represented vector.
In the turnstile model, each arriving item signals
an update to some component of the represented
vector. So item (i,a) indicates that the value of
the ith component of the vector is increased by
a. For this reason, datastream items are typically
written in the form (i , xi

(j)) to indicate that this
is the jth update to the ith component of the
represented vector. The value of xi is then the
sum of xi

(1)C xi
(2)C . . . over all such updates.

The update values may be negative; the special
case when they are restricted to be nonnegative is
sometimes called the cash register model.

One of the most commonly used measures for
datastream similarity is the Lp distance between
two streams, for p � 0. As in the standard
definition, the Lp distance between points �!x ;�!y
(hence, between streams representing those
points) is defined to be

P
ijxi

p � yi
pj1/p. In the

case that p D 0, the L0 distance (sometimes
called the Hamming distance) is taken to be the
number of i such that xi¤ yi. For p D 1, the
L1 distance is maxijxi � yij. Other measures
include the Jaccard similarity, the edit distance,
the earth-mover’s distance, and the length of
the longest common subsequence between the
streams (viewed as sequences).

Historical Background

Although the earliest datastream-style algorithms
were discovered some 30 years ago [11], the cur-
rent resurgence of interest in datastreams began
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with the seminal paper of Alon et al. [2] in 1996.
Implicit in their work is an algorithm for esti-
mating the L2 distance between streams. In 1999,
Feigenbaum et al. [10] developed a datastreaming
algorithm to approximate the L1 distance between
two streams. Building on this, Indyk [12] gave
datastreaming algorithms to approximate the Lp

distance between two datastreams, for all p 2
(0,2], utilizing the idea of p-stable distributions.
Later, Cormode et al. [7] demonstrated an effi-
cient algorithm for approximating the L0 distance
(i.e., Hamming distance). Sun and Saks [15] pro-
vide lower bounds for approximating Lp, for p >
2 (and including pD1), showing no datastream
algorithm working in polylogarithmic space can
approximate the Lp distance between two streams
within a polylogarithmic factor. (The bounds are
even stronger for p much larger than 2).

Datar et al. [8] studied the sliding window
model for datastreams, producing an algorithm
that approximates the Lp distance between
two windowed datastreams. Work by Datar
and Muthukrishnan [9] gave an algorithm for
approximating the Jaccard similarity between
two datastreams in the sliding window model.

Foundations

Estimating the L2 Distance
In their seminal paper, Alon et al. [2] provide a
method for estimating F2, the second frequency
moment, of a datastream. As observed in [10, 1],
this method can easily be extended to produce
a datastream algorithm to approximate the L2

distance. The ideas are briefly outlined below.
Throughout, the datastreams considered have

length n. For i D 1,2,...,n, the variable Xi is
defined to be an i.i.d. (independent and identi-
cally distributed) random variable taking on the
value � 1 or 1 with equal probability. Of course,
a datastream algorithm cannot maintain all the
values of each of the random variables in mem-
ory. This will be accounted for later; for now,
an algorithm is presented assuming that there is
random access to these values.

The datastreams vectors are represented in
the turnstile model; (x1 , : : : , xn) denotes the

accumulated values of the first stream, and
(y1 , : : : , yn ) denotes the accumulated values
in the second stream. The algorithm simply
maintains the value of

Pn
iD1Xi �

�
xi � xy

�
. This

value is straightforward to maintain: If an item
(i , xi

(j)) arrives for some i, j, the value Xi � xi
(j) is

added to it. If an item (i , yi
(j)) arrives, the value

Xi � yi
(j) is subtracted.

The algorithm focuses on the expected value
of the square of this quantity:

E
h�Pn

iD1Xi � .xi � yi /
�2
i

D E
hPn

iD1X
2
i � .xi � yi /

2

C
P
i¤j XiXj � .xi � yi /

�
xj � yj

�i

D
Pn
iD1 .xi � yi /

2

where the last equality follows since E[Xi]D 0
and Xi

2D 1 for all i, and all the random vari-
ables are independent. But this quantity is just
the square of the L2 distance between the two
streams. Hence, the problem amounts to obtain-
ing a good estimate of this expected value.

To do so, the above algorithm is run in parallel
k times, for kD � (1/"2). That is, it maintains the
value

Pn
iD1Xi �

�
xi � xy

�
for k different random

assignments of the Xi. The algorithm then takes
the average of their squares. For a given run t, this
value is denoted v(t). To further ensure that the
algorithm does not obtain a spurious estimate, the
procedure is repeated ` times, for `D � (log(1/ı)).
The algorithm then takes the median value over
fv(1), v(2), : : : , v(`)g. A standard application of
Chebyshev’s Inequality shows that this estimates
the square of the L2 distance within a (1 C ")
factor with probability greater than 1 � ı. (In
total, this method maintains k` values in parallel.)

Unfortunately, the procedure as described
above produces and maintains values for n
random variables. (In fact, due to the parallel
repetitions, it actually needs k`n random
variables.) However, the technique only needed
these variables to be four-wise independent.
(Two-wise independence is needed for the
expected value to be an unbiased estimator of the
square of the L2 distance; four-wise independence
implies that the variance is small.) Hence,
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these fully independent random variables can
be replaced with four-wise independent random
variables, which is necessary for Chebyshev’s
Inequality to hold. These random variables
can be pseudorandomly generated on the fly;
the datastream algorithm thus only needs to
remember a logarithmic-length seed for the
pseudorandomly generated values. The full
details are omitted here.

Estimating the Lp Distance: p-Stable
Distributions
In 2000, Indyk [12], using many of the ideas in [2,
10], extended the results to produce datastream
algorithms for approximating the Lp distance be-
tween streams, for all p 2 (0,2]. (Feigenbaum et
al. were the first to produce a datastream algo-
rithm for L1 distance; their technique relied on
their construction of pseudorandomly generated
“range-summable” variables that were four-wise
independent. Although similar in flavor to the
result of [2], it is somewhat more complicated).
For convenience, the algorithm outlined below
details the method for approximating the Lp norm
of a single vector. Note, however, that in the
turnstile model, it is a simple matter to produce
the Lp distance between two streams (by simply
negating all of the values in the second stream and
finding the norm of their union). Indyk’s method
uses random linear projections, and relies on the
notion of p-stable distributions.

A distribution D is p-stable if for all k real
numbers a1 , : : : , ak, if X1 , : : : , Xk are i.i.d
random variables drawn from distribution D,
then the random variable

P
iaiXi has the same

distribution as (
P

ijaij
p)1/p X for random variable

X with distribution D. There are two well-known
p-stable distributions. The Cauchy distribution,
with density function �C .x/ D 1

�
1

1Cx2
, is 1-

stable. The Gaussian distribution, with density
function �G.x/ D 1p

2 
e�x

2=2, is 2-stable. Al-
though closed-form functions are not known for
p-stable distributions for p¤1,2, Chambers et
al. [4] provide a method for generating p-stable
random variables for all p 2 (0,2]. Throughout
the rest of this discussion, D denotes a p-stable
distribution, for some fixed p.

The method for approximating the Lp norm
of a stream will now be outlined. As previously
noted, this is easily modified to give the Lp

distance between two streams. Throughout, the
vectors are represented as in the turnstile model,
and (z1 , : : : , zn ) denotes the vector represented
by the datastream. As in the previous section,
the n i.i.d. random variables X1 , : : : , Xn are
generated first, this time drawn from p-stable dis-
tribution D. A brief discussion of how to reduce
the number of these variables appears later.

The algorithm simply maintains the value
P

iXizi. Again, these values are easy to maintain:
If item (i , zi

(j)) appears for some i,j, the algorithm
adds the value Xizi

(j) to the sum. As in the
previous section, the algorithm gains better
accuracy by repeating the procedure multiple
times in parallel; in this case, the algorithm
runs the procedure k times in parallel, for
k D �

�
1
2

log .1=ı/
�
. The value of

P
iXizi

obtained in the `-th run using this procedure
is denoted Z(`).

The value Z(`) is a random variable itself.
Since D is p-stable, it is the case that
Z(`)DX(`) � (

P
ijzij

p)1/p for some random variable
X(`) drawn from D. then the output of the
algorithm is

1

�
median

n
jZ.1/j; : : : ; jZ.k/j

o
;

where � denotes the median value of jXj, for X a
random variable distributed according toD. (The
absolute value is taken for technical reasons. For
instance, the median value of X is 0 whenD is the
Gaussian distribution, while the median value of
jXj is strictly greater than 0.) The value of the me-
dian of fjZ(1)j, : : : , jZ(k)j g is (

P
ijzij

p)1/p times
the median of fjX(1)j, : : : , jX(k)j g. Hence, the
above output is an approximation of (

P
ijzij

p)1/p,
i.e., the Lp norm of the datastream, as needed. A
more careful argument shows that this estimate is
within a multiplicative factor (1 ˙ ") of the true
Lp norm, with probability greater than 1 � ı.

As in the previous section, Indyk observes that
rather than storing the values of n i.i.d random
variables, the values can be generated on the fly,
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using pseudorandom generators. The details are
omitted here.

Cormode et al. [7] investigate the problem
of estimating the L0 norm. One of their key
technical observations is that the Lp norm is
a good approximation of the L0 norm of the
stream, for p sufficiently small. (In particular,
they show the pD "/ log M is sufficient, where M
is the maximum absolute value of any item in the
stream.) Thus, the Hamming distance between
two streams can be approximated using the same
general algorithm that was described above.

Approximating Jaccard Similarity:
Min-Wise Hashing
Another useful similarity measure between
two streams is their Jaccard similarity. Given
two datastreams in the time-series model,
a1 , a2 , : : : , an and b1 , b2 , : : : , bn denote their
respective vectors. Further, A (and B) denotes
the set of distinct elements appearing in the first
stream (respectively, the second stream). The
Jaccard similarity between the streams is given
by jA\Bj / jA[Bj.

The first explicit study of the Jaccard simi-
larity between two streams was given by Datar
and Muthukrishnan [9]. Their paper examined the
sliding window model, which is discussed further
in the next section. However, a datastream algo-
rithm in the standard model was given implicitly
in the work of Cohen et al. [6], although the
notion of datastreams is never mentioned in the
paper.

The major technical tool uses min-wise
hashing, or min-hashing [3, 5]. For every
subset A of [n], the min-hash for A (with
respect to �), denoted h� (A), is defined to
be h� (A)Dmini2Af�(i)g, where � denotes a
permutation on [n]Df1, : : : , ng. The wonderful
property of the min-hash is that, when � is
chosen uniformly at random from the set of all
permutations on [n], for any two subsets A,B of
[n], it is the case that

Pr Œh�.A/ D h�.B/� D
jA \ Bj

jA [ Bj

This suggests the following algorithm.

The algorithm chooses � uniformly at random
from the set of permutations on [n]. (The fact that
storing � take � (n log n) space will be discussed
momentarily.) For the first stream, the algorithm
finds the value h� (A)Dmini2Af�(i)g, where A is
the set of distinct elements occurring in the first
stream. This is simple to do in a datastreaming
fashion: as each new aj appears, the algorithm
updates the min value if �(aj)is smaller than the
min seen so far. Likewise, for the second stream,
the algorithm finds the value h� (B), where B
is the set of distinct elements occurring in the
second stream. From the above, the probability
that the two values are equal is precisely the
Jaccard similarity between the two streams.

Of course, to obtain an accurate estimate of
this probability, the algorithm needs to run the
procedure multiple times. In this case, it will run
the procedure in parallel k times, each with an in-
dependently chosen random permutation. (Here,
kDO("�3 log (1/ı)).) The value � is defined to
be the fraction of times (out of k) that the min
values for the two streams coincide. That is,
if �1 , : : : ,�k are the k independently chosen
random permutations, then

� D
1

k
� #
ˇ
ˇ
˚
j W h�j .A/ D h�j .B/

�ˇ
ˇ

It is shown in [11] that with probability at
least 1� ı, the value � approximates the Jaccard
similarity within multiplicative factor (1˙ ").

In order for the above algorithm to be useable
in a datastreaming context, it must be able to
generate and store the necessary random per-
mutations in small space. This is done using
approximately min-wise independent hash func-
tions. Although this introduces additional error, it
can be done in small space and time. The reader
is referred to [13] for more details.

Sliding Windows
In many applications, the data from streams be-
comes outdated or unnecessary quickly. To help
understand this scenario better, researchers have
proposed the sliding window model of datas-
treams. Here, the algorithm must maintain statis-
tics (e.g., stream similarity), using only the last N
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items from the stream, for some N. This causes
additional complications, since as each new item
comes in, an old item is removed. Since memory
is limited, algorithms cannot track which of these
old items is disappearing. Still, there are datas-
tream algorithms for both Lp distance and Jaccard
similarity in the sliding window model.

In [8], Datar et al. define the sliding win-
dow model, and give a datastream algorithm
for approximating the Lp distance between two
streams (as well as several other datastream al-
gorithms). Their technique uses what they call an
exponential histogram. The histogram partitions
the last N items (i.e., those items in the sliding
window) into buckets; the last bucket may in fact
contain items older than the last N. Each bucket
maintains the necessary statistics for the items it
contains. For instance, a bucket containing the
items as,asC1,...,at would hold the Lp -sketch for
those items. (Due to memory constraints, the
bucket cannot actually maintain the values of all
the items it holds.)

As new items come in, the algorithm merges
old buckets to maintain the histogram structure,
creating new buckets only for newly encountered
items. The last bucket will eventually contain
only items that do not appear in the N most
recent, and will be removed from the histogram at
this time. Datar et al. observe that the additional
error in this windowed model, beyond that of the
standard model, comes from the fact that the last
bucket may contain items that are no longer in
the N-item window. But the structure of the expo-
nential histogram ensures that this error is not too
large. Hence, they provide a general method for
translating a wide range of datastream algorithms
into windowed-datastream algorithms.

Datar and Muthukrishnan [9] study the
problem of approximating the Jaccard similarity
of two streams in the sliding window model.
As in the non-windowed version, they use min-
hashing as a primary tool. The main complication
in the sliding window model is that maintaining
the minimum value over a sliding window is
hard. At a given time step t, the algorithm needs
to know the value min iDt , ... , t�NC 1f� j(ai)g,
where � j is a permutation chosen by the
datastream algorithm in the standard model.

Their solution is to maintain the value � j(ai)for
every relevantiD t , : : : , t�NC 1. For instance,
if � j(ai) >� j(aiC s) for some s > 0, then the value
� j(ai)will never be the minimum over the sliding
window at any time; hence, it may be discarded.
(Here, item ai occurs earlier than aiCs, thus item
ai will move out of the window before aiCs)
Amazingly, with high probability, the number of
relevant values that need to be maintained is at
most O(log n). Hence, the standard datastream
algorithm can be adapted to the sliding window
model, using small space.

Lower Bounds for Stream Distance
The major technique for proving lower bounds
utilize reductions from communication complex-
ity. Here, only sketches of the very high level
ideas are presented, with some of the main results
cited.

An often-used communication complexity
problem is DISJOINTNESS: Alice is given a set,
A, and Bob is given a set, B. Neither knows what
the other set is. They must communicate with
each other by sending messages back and forth,
until they decide whether A\B is nonempty.
(They are allowed to decide ahead of time the
protocol they will use to communicate messages.)
It has been shown that if the size of A and B is
� (n), the communication complexity (i.e., the
number of bits that must be communicated in the
worst case) is also at least � (n) [14].

A datastream algorithm that calculates the
distance between two streams can provide the
basis for a communication complexity algorithm.
A typical reduction gives a method for Alice
to transform her set A into a datastream (with-
out looking at set B). Likewise, the reduction
gives a method for Bob to transform B into a
datastream, without looking at A. Finally, the
reduction guarantees that Alice’s datastream and
Bob’s datastream are close if and only if A \ B
is non-empty. Then Alice can begin running the
datastream algorithm on her datastream. When it
has processed her stream, the algorithm will have
some memory bits indicating its current state.
Alice sends a message to Bob, telling him that
state. Bob can then finish running the datastream
algorithm on his own datastream. If the algorithm
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indicates that the two streams are close, he knows
A \ B is nonempty; otherwise, he knows that
A\BD¿ (and may communicate this to Alice
in one bit). Hence, Alice and Bob have solved
their communication complexity problem. Since
the original communication complexity problem
took at least � (n) bits, the datastream algorithm
must also use at least this much memory. (In this
case, showing that it cannot be space efficient.)

There is, of course, a great deal of technical
work in providing the proper reductions; the
difficulties are even greater when showing lower
bounds for approximations. However, building on
these ideas, Saks and Sun [15] show that approxi-
mating the L1 distance between two datastreams
is impossible to do in sublinear space. In fact,
their work shows that approximating within fac-
tor nO(") the Lp distance for any p� 2C " requires
space at least nO("). For p close to 2, this has
very little practical implications, but the bounds
become more meaningful for large p. Much sim-
pler reductions show the impossibility of space-
efficient datastream algorithms for approximating
the length of the longest common subsequence
between two datastreams (viewed as sequences).

Key Applications

Tracking Change in Network Traffic
The datastream algorithms outlined above allow
one to take an entire day of network traffic and
synopsize it using a small sketch. It is then
possible to measure how different traffic is from
day-to-day. Large changes in the network traffic
can signal denial of service attacks or worm
infestations.

Query Optimization
Most query-optimization techniques utilize data
statistics to produce better plans. The L2 norm
is a useful measure for approximating join sizes,
while the L0 norm gives the number of distinct
items in the stream.

Processing Genetic Data
Since genetic data consists of millions or billions
of base pairs for an individual, it is useful to think

of them as streams of data. The similarity of two
base-pair sequences is a fundamental concept.

Data Mining
Often individual entities are represented by mas-
sive streams of data (e.g., phone calls from a large
company, or IP addresses of users visiting a given
web site, or items bought at a grocery store). Es-
timating the similarity between these streams can
be a useful tool for identifying similar entities.
As one example, it is possible to determine which
web sites are most similar to each other, based on
the IP addresses of their visitors.
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