Skip to main content

Nucleic Acid-Associated Protein Genes

  • Chapter
The Gene
  • 568 Accesses

Abstract

This chapter begins a rather lengthy section devoted to the genes transcribed in eukaryotes by DNA-dependent RNA polymerase II and their prokaryotic and organellar counterparts that continues through Chapter 9. By far the majority of these class II genes encode proteins of numerous types, and hence the transcripts are messengers. In addition, the group contains those for small nuclear RNAs best represented by the U family in the human genome, along with a heterogeneous mixture of cistrons for inserted elements, but these are not viewed until the steps of processing are discussed in Chapter 12, for they are concerned in that activity. The first protein genes to be explored here are those that are associated in vivo with DNA, namely the histones and relatives, or with RNA, such as the ribosomal proteins. The treatment of the latter types at this point close to the examination of the rRNAs appears a logical step; moreover, the genes for histones seem equally essential prior to a discussion of any other proteinaceous substance, since their products have often been claimed to be active in the control of transcription. Since such regulation has also been considered to be manifested by way of those histone-containing bodies called nucleosomes that adhere to DNA strands (Olins and Olins, 1974), it is expedient to discuss those structures first and then proceed to the genes themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajiro, K., Borun, T. W., and Cohen, L. H. 198la. Phosphorylation states of different histone 1 subtypes and their relationships to chromatin functions during HeLa S-3 cell cycle.Biochemistry 20: 1445–1454.

    Google Scholar 

  • Ajiro, K., Borun, T. W., Shulman, S. D., McFadden, G. M., and Cohen, L. H. 198lb. Comparison of the structures of human histones IA and 1 B and their intramolecular phosphorylation sites during the HeLa S-3 cell cycle.Biochemistry 20: 1454–1464.

    Google Scholar 

  • Albright, S. C., Wiseman, J. M., Lange, R. A., and Garrard, W. T. 1980. Subunit structures of different electrophoretic forms of nucleosomes.J. Biol. Chem. 255: 3673–3684.

    PubMed  CAS  Google Scholar 

  • Allan, J., Hartman, P. G., Crane-Robinson, C., and Aviles, F. X. 1980. The structure of histone HI and its location in chromatin.Nature (London) 288: 675–679.

    CAS  Google Scholar 

  • Allfrey, V. G. 1980. Molecular aspects of the regulation of eukaryotic transcription: Nucleosomal proteins and their postsynthetic modifications in the control of DNA conformation and template function. In: Goldstein, L., and Prescott, D. M., eds.,Cell Biology: A Comprehensive Treatise, New York, Academic Press, Vol. 3, pp. 347–437.

    Google Scholar 

  • Allis, C. D., Glover, C. V. C., and Gorovsky, M. A. 1979. Micronuclei ofTetrahymena contain two types of histone H3.Proc. Natl. Acad. Sci. USA 76: 4857–4861.

    PubMed  CAS  Google Scholar 

  • Allis, C. D., Glover, C. V. C., Bowen, J. K., and Gorovsky, M. A. 1980. Histone variants specific to the transcriptionally active, amitotically dividing macronucleus of the unicellular eucaryote,Tetrahymena thermophila. Cell 20: 609–617.

    CAS  Google Scholar 

  • Alterman, R. B. M., Ganguly, S., Schulze, D. H., Marzluff, W. F., Schildkraut, C. L., and Skoultchi, A. I. 1984. Cell cycle regulation of mouse H3 histone mRNA metabolism.Mol. Cell. Biol. 4: 123–132.

    PubMed  CAS  Google Scholar 

  • Anderson, S., Bankier, A. T., Bartell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlick, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. R., Staden, R., and Young, I. G. 1981. Sequence and organization of the human mitochondrial genome.Nature (London) 290: 457–465.

    CAS  Google Scholar 

  • Anderson, S., de Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. 1982. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome.J. Mol. Biol. 156: 683–717.

    PubMed  CAS  Google Scholar 

  • Ball, D. J., Gross, D. S., and Garrard, W. T. 1983. 5-Methylcytosine is localized in nucleosomes that contain histone HI.Proc. Natl. Acad. Sci. USA 80: 5490–5494.

    Google Scholar 

  • Bannon, G. A., Bowen, J. K., Yao, M. C., and Gorovsky, M. A. 1984.Tetrahymena H4 genes: Structure, evolution and organization in macro-and micronuclei.Nucleic Acids Res. 12: 1961–1975.

    CAS  Google Scholar 

  • Barnes, K. L., Craigie, R. A., Cattini, P. A., and Cavalier-Smith, T. 1982. Chromatin from the unicellular red algaPorphyridium has a nucleosome structure.J. Cell Sci. 57: 151–160.

    CAS  Google Scholar 

  • Bavykin, S, G., Usachenko, S. I., Lishanskaya, A. I., Shick, V. V., Belyaysky, A. V., Undritsov, I. M., Strokov, A. A., Zalenskaya, I. A., and Mirzabekov, A. D. 1985. Primary organization of nucleosomal core particles is invariable in repressed and active nuclei from animal, plant and yeast cells.Nucleic Acids Res. 13: 3439–3458.

    CAS  Google Scholar 

  • Bedwell, D., Davis, G., Gosink, M., Post, L., Nomura, M., Kestler, H., Zengel, J. M., and Lindahl, L. 1985. Nucleotide sequence of the alpha ribosomal protein operon ofEscherichia coli. Nucleic Acids Res.13: 3891–3903.

    CAS  Google Scholar 

  • Berthold, V., and Geider, K. 1976. Interaction of DNA with DNA-binding proteins. The characterization of protein HD fromEscherichia coli and its nucleic acids complexes.Eur. J. Biochem 71: 443–449.

    PubMed  CAS  Google Scholar 

  • Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A. 1981. Sequence and gene organization of mouse mitochondrial DNA.Cell 26: 167–180.

    PubMed  CAS  Google Scholar 

  • Bozzoni, I., Beccari, E., Luo, Z. X., Amaldi, F., Pierandrei-Amaldi, P., and Campioni, N. 1981.Xenopus laevis ribosomal protein genes: Isolation of recombinant and cDNA clones and study of genomic organization.Nucleic Acids Res 9: 1069–1086.

    CAS  Google Scholar 

  • Brandt, W., Strickland, W., Strickland, M., Carlisle, L., Woods, D., and von Holt, C. 1979. A histone programme during the life cycle of the sea urchin.Eur. J. Biochem. 94:1-10.

    Google Scholar 

  • Branno, M., de Franciscis, V., and Tosi, L. 1983.In vitro methylation of histones in sea urchin nuclei during early embryogenesis.Biochim. Biophys. Acta 741: 136–142.

    CAS  Google Scholar 

  • Bruschi, S., and Wells, J. R. E. 1981. Vertebrate histone gene transcription occurs from both DNA strands.Nucleic Acids Res.9: 1591–1597.

    PubMed  CAS  Google Scholar 

  • Bryan, P. N., Olah, J., and Birnstiel, M. L. 1983. Major changes in the 5’ and 3’ chromatin structure of sea urchin histone genes accompany their activation and inactivation in development.Cell 33: 843–848.

    PubMed  CAS  Google Scholar 

  • Burlingame, R. W., Love, W. E., Wang, B. C., Hamlin, R., Xuong, N. H., and Moudrianakis, E. V. 1985. Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3.3 A.Science 228: 546–553.

    PubMed  CAS  Google Scholar 

  • Busslinger, M., Portmann, R., and Birnstiel, M. L. 1979. A regulatory sequence near the 3’ end of sea urchin histone genes.Nucleic Acids Res.6: 2997–3008.

    PubMed  CAS  Google Scholar 

  • Busslinger, M., Portmann, R., Irminger, J. C., and Birnstiel, M. L. 1980. Ubiquitous and gene-specific 5’ sequences in a sea urchin histone DNA clone coding for histone protein variants.Nucleic Acids Res.8: 957–977.

    PubMed  CAS  Google Scholar 

  • Butler, P. J. G. 1984. A defined structure of the 30 nm chromatin fibre which accommodates different nucleosomal repeat lengths. EMBO J.3: 2599–2604.

    PubMed  CAS  Google Scholar 

  • Cereghini, S., and Yaniv, M. 1984. Assembly of transfected DNA into chromatin: Structural changes in the origin-promoter-enhancer region upon replication.EMBO J.3: 1243–1253.

    PubMed  CAS  Google Scholar 

  • Cerretti, D. P., Dean, D., Davis, G. R., Bedwell, D. M., and Nomura, M. 1983. Thespc ribosomal protein operon ofEscherichia coli: Sequence and cotranscription of the ribosomal protein genes and a protein export gene.Nucleic Acids Res.11: 2599–2616.

    PubMed  CAS  Google Scholar 

  • Certa, U., Colavito-Shepanski, M., and Grunstein, M. 1984. Yeast may not contain histone HI: The only known “histone H1-like” protein inSaccharomyces cerevisiae is a mitochondrial protein.Nucleic Acids Res.12: 7975–7985.

    PubMed  CAS  Google Scholar 

  • Chambers, S. A. M., and Shaw, B. R. 1984. Levels of histone H4 diacetylation decrease dramatically during sea urchin embryonic development and correlate with cell doubling rate.J. Biol. Chem. 259: 13458–13463.

    PubMed  CAS  Google Scholar 

  • Choe, J., Kolodrubetz, D., and Grunstein, M. 1982. The two yeast histone H2A genes encode similar protein subtypes.Proc. Natl. Acad. Sci. USA 79: 1484–1487.

    PubMed  CAS  Google Scholar 

  • Cohn, R. H., and Kedes, L. H. 1979. Nonallelic histone gene clusters of individual sea urchins(Lytechinus pictus): Polarity and gene organization.Cell 18: 843–853.

    PubMed  CAS  Google Scholar 

  • Cole, K. D., York, R. G., and Kistler, W. S. 1984. The amino acid sequence of boar HIT, a testis-specific H1 histone variant.J. Biol. Chem. 259: 13695–13702.

    PubMed  CAS  Google Scholar 

  • Cusick, M. E., DePamphilis, M. L., and Wassarman, P. M. 1984. Dispersive segregation of nucleosomes during replication of simian virus 40 chromosomes.J. Mol. Biol. 178: 249–271.

    PubMed  CAS  Google Scholar 

  • D’Andrea, R., Harvey, R., and Wells, J. R. E. 1981. Vertebrate histone genes: Nucleotide sequence of a chicken H2A gene and regulatory flanking sequences. Nucleic Acids Res.9: 3119–3128.

    PubMed  Google Scholar 

  • D’Anna, J. A., Gurley, L. R., and Becker, R. R. 1981. Histone H1°a and Hl°b are the same as CHO histone H1(III) and H1(IV): New features of HI° phosphorylation during the cell cycle.Biochemistry 20: 4501–4505.

    PubMed  Google Scholar 

  • Dean, D., and Nomura, M. 1982. Genetics and regulation of ribosomal protein synthesis inEscherichia coli. In: Busch, H., and Rothblum, L., eds.The Cell Nucleus, New York, Academic Press, Vol. XII, pp. 185–212.

    Google Scholar 

  • Depetrocellis, B., Parente, A., Tomei, L., and Geraci, G. 1983. An HI histone and a protamine molecule organize the sperm chromatin of the marine wormChaetopterus variopedatus. Cell Diff.12: 129–135.

    CAS  Google Scholar 

  • Derenzini, M., Hernandez-Verdun, D., and Bouteille, M. 1983a. Visualization of a repeating subunit organization in rat hepatocyte to chromatin fixedin situ. J. Cell Sci.61: 137–149.

    CAS  Google Scholar 

  • Derenzini, M., Pession, A., Betts-Eusebi, C. M., and Novello, F. 1983b. Relationship between the extended non-nucleosomal intranucleolar chromatinin situ and ribosomal RNA synthesis.Exp. Cell Res. 145: 127–143.

    PubMed  CAS  Google Scholar 

  • Destrée, O. H. J., Bendig, M. M., De Laaf, R. T. M., and Koster, J. G. 1984. Organization ofXenopus histone gene variants within clusters and their transcriptional expression.Biochim. Biophys. Acta 782: 132–141.

    PubMed  Google Scholar 

  • Dillon, L. S. 1962. Comparative cytology and the evolution of life.Evolution 16: 102–117.

    Google Scholar 

  • Dillon, L. S. 1981.Ultrastructure, Macromolecules, and Evolution. New York, Plenum Press. Dillon, L. S. 1983.The Inconstant Gene. New York, Plenum Press.

    Google Scholar 

  • Djondjurov, L. P., Yancheva, N. Y., and Ivanova, E. C. 1983. Histones of terminally differentiated cells undergo continuous turnover.Biochemistry 22: 4095–4102.

    PubMed  CAS  Google Scholar 

  • Doenecke, D., and Tönjes, R. 1984. Conserved dyad symmetry structures at the 3’ end of H5 histone genes.J. Mol. Biol. 178: 121–135.

    PubMed  CAS  Google Scholar 

  • Dudov, K. P., and Perry, R. P. 1984. The gene family encoding the mouse ribosomal protein L32 contains a uniquely expressed intron-containing gene and an unmutated processed gene.Cell 3: 457–468.

    Google Scholar 

  • Eamshaw, W. C., Honda, B. M., Laskey, R. A., and Thomas, J. O. 1980. Assembly of nucleosomes: The reaction involving X. laevis nucleoplasmin. Cell21: 373–383.

    Google Scholar 

  • Egan, P. A., and Levy-Wilson, B. 1981. Structure of transcriptionally active and inactive nucleosomes from butyrate-treated and control HeLa cells.Biochemistry 20: 3695–3702.

    PubMed  CAS  Google Scholar 

  • Fabijanski, S., and Pellegrini, M. 1982. ADrosophila ribosomal protein gene is located near repeated sequences including rDNA sequences.Nucleic Acids Res.10: 5979–5991.

    PubMed  CAS  Google Scholar 

  • Finch, J. T., and Klug, A. 1976. Solenoidal model for superstructure in chromatin.Proc. Natl. Acad. Sci. USA 73: 1897–1901.

    PubMed  CAS  Google Scholar 

  • Finch, J. T., Lutter, L. C., Rhodes, D., Brown, R. S., Rushton, B., Levitt, M., and Klug, A. 1977. Structure of nucleosome core particles of chromatin.Nature (London) 269: 29–36.

    CAS  Google Scholar 

  • Franke, W. W., Scheer, U., Trendelenburg, M. F., Zentgraf, H., and Spring, H. 1978. Morphology of transcriptionally active chromatin. Cold Spring Harbor Symp. Quant. Biol.42: 755–772.

    CAS  Google Scholar 

  • Franke, W. W., Scheer, U., Spring, H., Trendelenburg, M. F., and Zentgraf, H. 1979. Organization of nucleolar chromatin. In: Busch, H., ed.,The Cell Nucleus, New York, Academic Press, Vol. VII, pp. 4995.

    Google Scholar 

  • Franklin, S. G., and Zweidler, A. 1977. Non-allelic variants of histones 2a, 2b and 3 in mammals.Nature (London) 266: 273–275.

    CAS  Google Scholar 

  • Fried, H. M., Pearson, J. J., Kim, C. H., and Warner, J. R. 1981. The genes for fifteen ribosomal proteins ofSaccharomyces cerevisiae. J. Biol. Chem.256: 10176–10183.

    CAS  Google Scholar 

  • Fusauchi, Y., and Iwai, K. 1983.Tetrahymena histone H2A. Isolation and two variant sequences.J. Biochem. 93: 1487–1497.

    CAS  Google Scholar 

  • Gallwitz, D., and Mueller, G. C. 1969. Histone synthesisin vitro by cytoplasmic microsomes from HeLa cells.Science 163: 1351–1353.

    PubMed  CAS  Google Scholar 

  • Glikin, G. C., Ruberti, I., and Worce, A. 1984. Chromatin assembly inXenopus oocytes:In vitro studies.Cell 37: 33–41.

    PubMed  CAS  Google Scholar 

  • Grandy, D. K., Engel, J. D., and Dodgson, J. B. 1982. Complete nucleotide sequence of chicken H2b histone gene.J. Biol. Chem. 257: 8577–8580.

    PubMed  CAS  Google Scholar 

  • Green, G. R., Searcy, D. G., and DeLange, R. J. 1983. Histone-like protein in the archaebacteriumSulfolobus acidocaldarius. Biochim. Biophys. Acta 741: 251–257.

    CAS  Google Scholar 

  • Green, L., Van Antwerpen, R., Stein, J., Stein, G., Tripputi, P., Emanuel, B., Selden, J., and Croce, C. 1984. A major human histone gene cluster on the long arm of chromosome 1.Science 226: 838–840.

    PubMed  CAS  Google Scholar 

  • Groppi, V. E., and Coffino, P. 1980. G1 and S phase mammalian cells synthesize histones at equivalent rates.Cell 21: 195–204.

    PubMed  CAS  Google Scholar 

  • Grosschedl, R., and Birnstiel, M. L. 1980. Spacer DNA sequences upstream of the T-A-T-A-A-A-T-A sequence are essential for promotion of H2A histone gene transcriptionin vivo. Proc. Natl. Acad. Sci. USA 72: 7102–7106.

    Google Scholar 

  • Grunstein, M., Diamond, K. E., Knoppel, E., and Grunstein, J. E. 1981. Comparison of the early histone H4 gene sequence ofStrongylocentrotus purpuratus with maternal, early, and late H4 mRNA sequences.Biochemistry 20: 1216–1223.

    PubMed  CAS  Google Scholar 

  • Gurley, L. R., Walton, R. A., and Tobey, R. A. 1972. The metabolism of histone fractions. IV. Synthesis of histones during the G1-phase of the mammalian life cycle.Arch. Biochem. Biophys. 148: 633–641.

    PubMed  CAS  Google Scholar 

  • Harvey, R. P., Whiting, J. A., Coles, L. S., Krieg, P. A., and Wells, J. R. E. 1983. An extremely variant histone H2A sequence expressed in the chicken embryo.Proc. Natl. Acad. Sci. USA 80: 2819–2823.

    PubMed  CAS  Google Scholar 

  • Hatch, C. L., Bonner, W. M., and Moudrianakis, E. N. 1983. Minor histone 2A variants and ubiquinated forms in the native H2A:H2B dimer.Science 221: 468–470.

    PubMed  CAS  Google Scholar 

  • Heintz, N., Zernik, M., and Roeder, R. G. 1981. The structure of the human histone genes: Clustered but not tandemly repeated.Cell 24: 661–668.

    PubMed  CAS  Google Scholar 

  • Helms, S., Baumbach, L., Stein, G., and Stein, J. 1984. Requirement of protein synthesis for the coupling of histone mRNA levels and DNA replication.FEBS Lett.168: 65–69.

    PubMed  CAS  Google Scholar 

  • Hentschel, C. C., and Birnstiel, M. L. 1981. The organization and expression of histone gene families.Cell 25: 301–313.

    PubMed  CAS  Google Scholar 

  • Holt, C. A., and Childs, G. 1984. A new family of tandem repetitive early histone genes in the sea urchinLytechinus pictus: Evidence for concerted evolution within tandem arrays.Nucleic Acids Res.12: 6455–6471.

    PubMed  CAS  Google Scholar 

  • Huang, H. C., and Cole, R. D. 1984. The distribution of H1 histone is nonuniform in chromatin and correlates with different degrees of condensation.J. Biol. Chem. 259: 14237–14242.

    PubMed  CAS  Google Scholar 

  • Ikemura, T., Itoh, S., Post, L. E., and Nomura, M. 1979. Isolation and characterization of stable hybrid mRNA molecules transcribed from ribosomal protein promoters inEscherichia coli. Cell 18: 895–903.

    CAS  Google Scholar 

  • Ishimi, Y., Yasuda, H., Hirosumi, J., Hanaoka, F., and Yamada, M. A. 1983. A protein which facilitates assembly of nucleosome-like structures in vitro in mammalian cells. J. Biochem.94: 735–744.

    PubMed  CAS  Google Scholar 

  • Jardine, N. J., and Leaver, J. L. 1978. The fractionation of histones isolated fromEuglena gracilis. Biochem. J.169: 103–111.

    CAS  Google Scholar 

  • Jin, Y.-J., and Cole, R. D. 1985. Histone H1° is distributed unlike HI in chromatin aggregation.FEBS Lett.182: 455–458.

    PubMed  CAS  Google Scholar 

  • Jordano, J., Montero, F., and Palacidn, E. 1984a. Rearrangement of nucleosomal components by modification of histone amino groups. Structural role of lysine residues.Biochemistry 23: 4280–4284.

    PubMed  CAS  Google Scholar 

  • Jordan, J., Montero, F., and Palaciân, E. 1984b. Contribution of histones H2A and H2B to the folding of nucleosomal DNA.Biochemistry 23: 4285–4289.

    Google Scholar 

  • Kedes, L. H. 1976. Histone messengers and histone genes.Cell 8: 321–331.

    PubMed  CAS  Google Scholar 

  • Kedes, L. H. 1979. Histone genes and histone messengers.Annu. Rev. Biochem. 48: 837–870.

    PubMed  CAS  Google Scholar 

  • Kelly, P. M., Schofield, P. N., and Walker, I. O. 1983. Histone gene expression inPhysarum polycephalum 2. Coupling of histone and DNA synthesis.FEBS Lett.161: 79–83.

    CAS  Google Scholar 

  • Kinkade, J. M., and Cole, R. D. 1966. The resolution of four lysine-rich histones derived from calf thymus.J. Biol. Chem. 241: 5790–5797.

    PubMed  CAS  Google Scholar 

  • Klug, A., Rhodes, D., Smith, J., Finch, J., and Thomas, J. 1980. A low resolution structure for the histone core of the nucleosome.Nature (London) 287: 509–516.

    CAS  Google Scholar 

  • Kornberg, R. D. 1977. Structure of chromatin.Annu. Rev. Biochem. 46: 931–954.

    PubMed  CAS  Google Scholar 

  • Krieg, P. A., Robins, A. J., Colman, A., and Wells, J. R. E. 1982. Chicken histone H5 mRNA: The polyadenylated RNA lacks the conserved histone 3’ terminator sequence. Nucleic Acids Res.10: 6777–6785.

    PubMed  CAS  Google Scholar 

  • Krieg, P. A., Robins, A. J., D’Andrea, R., and Wells, J. R. E. 1983. The chicken H5 gene is unlinked to core and H1 histone genes.Nucleic Acids Res.11: 619–627.

    PubMed  CAS  Google Scholar 

  • Krohne, G., and Franke, W. W. 1980. Immunological identification and localization of the predominant nuclear protein of the amphibian oocyte nucleus.Proc. Natl. Acad. Sci. USA 77: 1034–1038.

    PubMed  CAS  Google Scholar 

  • Kuo, M. T., Iyer, B., and Schwarz, R. J. 1982. Condensation of chromatin into chromosomes preserves an open configuration but alters the DNAse I hypersensitive cleavage sites of the transcribed gene.Nucleic Acids Res.10: 4565–4579.

    PubMed  CAS  Google Scholar 

  • Lammi, M., Paci, M., and Gualerzi, C. O. 1984. Proteins from the prokaryotic nucleoid. The interaction between protein NS and DNA involves the oligomeric form of the protein and at least one arg residue.FEBS Lett.170: 99–104.

    CAS  Google Scholar 

  • Larkin, J. C., and Woolford, J. L. 1983. Molecular cloning and analysis of theCRY] gene: A yeast ribosomal protein gene.Nucleic Acids Res.11: 403–420.

    PubMed  CAS  Google Scholar 

  • Lathe, R., Buc, H., Lecocq, J. P., and Bautz, E. K. F. 1980. Prokaryotic histone-like protein interacting with RNA polymerase.Proc. Natl. Acad. Sci. USA 77: 3548–3552.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. M. C., Molenaar, C. M. T., Cohen, L. H., Mager, W. H., and Planta, R. J. 1982. The structure of the gene coding for the phosphorylated ribosomal protein S 10 in yeast.Nucleic Acids Res.10: 5869–5878.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. M. C., Schoppink, P. J., Cornelissen, M. I. E., Cohen, L. H., Mager, W. H., and Planta, R. J. 1983. Yeast ribosomal protein S33 is encoded by an unsplit gene.Nucleic Acids Res.11: 7759–7768.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. M. C., Hagendoorn, M. J. M., Mager, W. H., and Planta, R. J. 1984a. Structural comparison of yeast ribosomal protein genes.Nucleic Acids Res.12: 6685–1700.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. M. C., Mager, W. H., and Planta, R. J. 1984b. The primary structure of the gene encoding yeast ribosomal protein L16.FEBS Lett.175: 371–376.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. M. C., Kraakman, P., Mager, W. H., and Planta, R. J. I985a. The genes for yeast ribosomal proteins S24 and L46 are adjacent and divergently transcribed.Nucleic Acids Res.13: 701–709.

    Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. M. C., Molenaar, C. M. T., Witsenboer, H. M. A., Mager, W. H., and Planta, R. J. 19856. Yeast contains two functional genes coding for ribosomal protein 510.Nucleic Acids Res.13: 5027–5039.

    Google Scholar 

  • Lennox, R. W., and Cohen, L. H. 1983. The histone H1 complements of dividing and nondividing cells of the mouse.J. Biol. Chem. 258: 262–268.

    PubMed  CAS  Google Scholar 

  • Levy, S., Sures, I., and Kedes, L. 1982. The nucleotide and amino acid coding sequence of a gene for HI histone that interacts with euchromatin. The early embryonic HI gene of the sea urchin,Strongylocentrotus purpuratus. J. Biol. Chem. 257: 9438–9443.

    CAS  Google Scholar 

  • Lifton, R. P., Goldberg, M. L., Karp, R. W., and Hogness, D. S. 1977. The organization of histone genes inDrosophila melanogaster: Functional and evolutionary implications.Cold Spring Harbor Symp. Quant. Biol. 42: 1047–1051.

    Google Scholar 

  • Mackie, G. A. 1981. Nucleotide sequences of the gene for ribosomal protein S20 and its flanking regions.J. Biol. Chem. 256: 8177–8182.

    PubMed  CAS  Google Scholar 

  • Maimets, T., Remme, J., and Villems, R. 1984. Ribosomal protein L16 binds to the 3’-end of transfer RNA.FEBS Lett.166: 53–56.

    PubMed  CAS  Google Scholar 

  • Marian, B., and Wintersberger, U. 1980. Histone synthesis during sporulation of yeast.FEBS Lett.117: 63–67.

    PubMed  CAS  Google Scholar 

  • Martinage, A., Belaiche, D., Dupressoir, T., and Sautiere, P. 1983. Primary structure of histone H2A from gonads of the starfishAsterias rubens. Eur. J. Biochem.130: 465–472.

    CAS  Google Scholar 

  • Mathis, D., Oudet, P., and Chambon, P. 1981. Structure of transcribing chromatin.Prog. Nucleic Acids Res. Mol. Biol. 24: 1–55.

    Google Scholar 

  • Matthews, D. E., Hessler, R. A., Denslow, N. D., Edwards, J. S., and O’Brien, T. W. 1982. Protein composition of the bovine mitochondrial ribosome.J. Biol. Chem. 257:8788-8794.

    Google Scholar 

  • Mauron, A., Kedes, L., Hough-Evans, B., and Davidson, E. H. 1982. Accumulation of individual histone mRNAs during embryogenesis of the sea urchin Strongylocentrotus purpuratus. Dev. Biol.94: 435–440.

    Google Scholar 

  • Maxson, R., Mohun, T., and Kedes, L. 1982. Histone genes. In: Maclean, N., Gregory, S. P., and Flavell, R. A., eds.,Eukaryotic Genes: Their Structure, Activity and Regulation, London, Butterworths, pp. 277–298.

    Google Scholar 

  • Maxson, R., Mohun, T., Gormezano, G., Childs, G., and Kedes, L. 1983. Distinct organization and patterns of expression of early and late histone gene sets in the sea urchin.Nature (London) 301: 120–125.

    CAS  Google Scholar 

  • McGhee, J. D., Nickol, J. M., Felsenfeld, G., and Rau, D. C. 1983a. Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of specie’s and spacer length.Cell 33: 831–841.

    PubMed  CAS  Google Scholar 

  • McGhee, J. D., Nickol, J. M., Felsenfeld, G., and Rau, D. C. 1983b. Histone hyperacetylation has little effect on the higher order folding of chromatin.Nucleic Acids Res.11: 4065–4075.

    PubMed  CAS  Google Scholar 

  • Miller, F. D., Dixon, G. H., Rattner, J. B., and van de Sande, J. H. 1985. Assembly and characterization of nucleosomal cores on B- vs. Z-form DNA.Biochemistry 24: 102–109.

    PubMed  CAS  Google Scholar 

  • Mitra, G., and Warner, J. R. 1984. A yeast ribosomal protein gene whose intron is in the 5’ leader.J. Biol. Chem. 259: 9218–9224.

    PubMed  CAS  Google Scholar 

  • Molenaar, C. M. T., Woudt, L. P., Jansen, A. E. M., Mager, W. H., and Planta, R. J. 1984. Structure and organization of two linked ribosomal protein genes in yeast. Nucleic Acids Res.12: 7345–7358.

    PubMed  CAS  Google Scholar 

  • Monk, R. J., Meyuhas, O., and Perry, R. P. 1981. Mammals have multiple genes for individual ribosomal proteins.Cell 24: 301–304.

    PubMed  CAS  Google Scholar 

  • Montandon, P. E., and Stutz, E. 1984. The genes for the ribosomal proteins S12 and S7 are clustered with the gene for the EF-Tu protein on the chloroplast genome ofEuglena gracilis. Nucleic Acids Res.12: 2851–2859.

    CAS  Google Scholar 

  • Moorman, A. F. M., deBoer, P. A. J., De Laaf, R. T. M., and Destrée, O. H. J. 1982. Primary structure of the H2A and H2B genes and their flanking sequences in a minor histone gene cluster ofXenopus laevis. FEBS Lett.144: 235–240.

    CAS  Google Scholar 

  • Moyne, G., Harper, F., Saragosti, S., and Yaniv, M. 1982. Absence of nucleosomes in a histone-containing nucleoprotein complex obtained by dissociation of purified SV40 virions.Cell 30: 123–130.

    PubMed  CAS  Google Scholar 

  • Mueller, R. D., Yasuda, H., Hatch, C. L., Bonner, W. M., and Bradbury, E. M. 1985. Identification of ubiquinated histones 2A and 2B inPhysarum polycephalum. J. Biol. Chem.260: 5147–5153.

    CAS  Google Scholar 

  • Närkhammar-Meuth, M., Eliasson, R., and Magnusson, G. 1981. Discontinuous synthesis of both strands at the growing fork during polyoma DNA replicationin vitro. J. Virol.39: 11–20.

    Google Scholar 

  • O’Connell, P., and Rosbash, M. 1984. Sequence, structure, and codon preferences of theDrosophila ribosomal protein 49 genes.Nucleic Acids Res.12: 5497–5513.

    Google Scholar 

  • Old, R. W., and Woodland, H. R. 1984. Histone genes; Not so simple after all.Cell 38: 624–626.

    PubMed  CAS  Google Scholar 

  • Old, R. W., Woodland, H. R., Ballantine, J. E. M., Aldridge, T. C., Newton, C. A., Bains, W. A., and Turner, P. C. 1982. Organization and expression of cloned histone gene clusters fromXenopus laevis andX. borealis. Nucleic Acids Res.10: 7561–7580.

    CAS  Google Scholar 

  • Olins, P. 0., and Nomura, M. 1981. Regulation of the S10 ribosomal protein operon inE. coli: Nucleotide sequence at the start of the operon.Cell 26: 205–211.

    CAS  Google Scholar 

  • Olins, A. L., and Olins, D. E. 1974. Spheroid chromatin units (bodies).Science 183: 330–332.

    PubMed  CAS  Google Scholar 

  • Olins, A. L., and Olins, D. E. 1979. Stereo electron microscopy of the 25nm chromatin fibers in isolated nuclei.J. Cell Biol. 81: 260–265.

    PubMed  CAS  Google Scholar 

  • Oudet, P., Germond, J. E., Bellard, M., Spadafora, C., and Chambon, P. 1977. Nucleosome structure.Phil. Trans. R. Soc. Lond. B 283: 241–258.

    Google Scholar 

  • Overton, G. C., and Weinberg, E. S. 1978. Length and sequence heterogeneity of the histone gene repeat unit of the sea urchin,S. purpuratus. Cell 14: 247–257.

    CAS  Google Scholar 

  • Palen, T. E., and Cech, T. R. 1984. Chromatin structure of the replication origins and transcription-initiations region of the ribosomal RNA genes ofTetrahymena. Cell 36: 933–942.

    CAS  Google Scholar 

  • Pardon, J. F., Worcester, D. L., Wooley, J. C., Cotter, R. I., Lilley, D. M. J., and Richards, B. M. 1977. The structure of the chromatin core particle in solution.Nucleic Acids Res.4: 3199–3214.

    PubMed  CAS  Google Scholar 

  • Pedersen, S., Skouv, J., Kajitani, M., and Ishihama, A. 1984. Transcriptional organization of therpsA operon ofEscherichia coli. Mol. Gen. Genet.196: 135–140.

    CAS  Google Scholar 

  • Pehrson, J. R., and Cole, R. D. 1981. Bovine Hl° histone subfractions contain an invariant sequence which matches histone H5 rather than H1.Biochemistry 20: 2298–2301.

    PubMed  CAS  Google Scholar 

  • Pehrson, J. R., and Cole, R. D. 1982. Histone HI subfractions and HI° turn over at different rates in nondividing cells. Biochemistry21: 456–460.

    PubMed  CAS  Google Scholar 

  • Pierandrei-Amaldi, P., Beccaci, E., Amaldi, F., and Bozzoni, I. 1982. Ribosomal protein genes inXenopus laevis. In: Busch, H., and Rothblum, L., eds.The Cell Nucleus. New York, Academic Press, Vol. XII, pp. 227–243.

    Google Scholar 

  • Plumb, M., Marashi, F., Green, L., Zimmerman, A., Zimmerman, S., Stein, J., and Stein, G. 1984. Cell cycle regulation of human histone HI mRNA.Proc. Natl. Acad. Sci. USA 81: 434–438.

    PubMed  CAS  Google Scholar 

  • Post, L. E., and Nomura, M. 1980. DNA sequences from thestr operon ofEscherichia coli. J. Biol. Chem.255: 4660–4666.

    CAS  Google Scholar 

  • Post, L. E., Strycharz, G. D., Nomura, M., Lewis, H., and Dennis, P. P. 1979. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit ß inEscherichia coli. Proc. Natl. Acad. Sci. USA 76: 1697–1701.

    CAS  Google Scholar 

  • Post, L. E., Arfsten, A. E., Davis, G. R., and Nomura, M. 1980. DNA sequence of the promoter region for the ribosomal protein operon inEscherichia coli. J. Biol. Chem.255: 4653–4659.

    CAS  Google Scholar 

  • Ramsay, N., Felsenfeld, G., Rushton, B. M., and McGhee, J. D. 1984. A 145-base pair DNA sequence that positions itself precisely and asymmetrically on the nucleosome core.EMBO J.3: 2605–2611.

    PubMed  CAS  Google Scholar 

  • Reichhart, R., Jömvall, H., Carlquist, H., Zeppezauer, M. 1985a. The primary structure of two polypeptide chains from preparations of homeostatic thymus hormone (HTH„ and HTHp).FEBS Lett.188: 63–67.

    PubMed  CAS  Google Scholar 

  • Reichhart, R., Zeppezauer, M., and Jömvall, H. 1985b. Preparations of homeostatic thymus hormone consist predominantly of histones 2A and 2B and suggest additional histone functions.Proc. Natl. Acad. Sci. USA 82: 4871–4875.

    PubMed  CAS  Google Scholar 

  • Ring, D., and Cole, R. D. 1983. Close contacts between H1 histone molecules in nuclei.J. Biol. Chem. 258: 15361–15364.

    PubMed  CAS  Google Scholar 

  • Risley, M. S., and Eckhardt, R. A. 1981. H1 histone variants inXenopus laevis. Dev. Biol.84: 79–87.

    CAS  Google Scholar 

  • Rizzo, P. J. 1981. Comparative aspects of basic chromatin proteins in dinoflagellates.BioSystems 14: 433–443.

    PubMed  CAS  Google Scholar 

  • Rizzo, P. J., and Morris, R. L. 1984. Some properties of the histone-like protein fromCrypthecodinium cohnii (HCc).BioSystems 16: 211–216.

    CAS  Google Scholar 

  • Rizzo, P. J., Bradley, W., and Morris, R. L. 1985. Histones of the unicellular algaOlisthodiscus luteus. Biochemistry 24: 1727–1734.

    CAS  Google Scholar 

  • Robbins, E., and Borun, T. W. 1966. The cytoplasmic synthesis of histones in HeLa cells and its temporal relationship to DNA replication.Proc. Natl. Acad. Sci. USA 57: 409–416.

    Google Scholar 

  • Roberts, S. B., Weisser, K. E., and Childs, G. 1984. Sequence comparisons of non-allelic late histone genes and their early counterparts.J. Mol. Biol. 174: 647–662.

    PubMed  CAS  Google Scholar 

  • Rodrigues, J. De A., Brandt, W. F., and von Holt, C. 1979. Plant histone 2 from wheat germ, a family of histone H2A variants.Biochim. Biophys. Acta 578: 196–206.

    CAS  Google Scholar 

  • Roufa, D. J., and Marchionni, M. A. 1982. Nucleosome segregation at a defined mammalian chromosomal site.Proc. Natl. Acad. Sci. USA 79: 1810–1814.

    PubMed  CAS  Google Scholar 

  • Rouvière-Yaniv, J., and Gros, F. 1975. Characterization of a novel, low-molecular-weight DNA binding protein fromEscherichia coli. Proc. Natl. Acad. Sci. USA 72: 3420–3432.

    Google Scholar 

  • Ruberti, I., Fragapane, P., Pierandrei-Amaldi, P., Beccari, E., Amaldi, F., and Bozzoni, I. 1982. Characterization of histone genes isolated fromXenopus laevis andXenopus tropicalis genomic libraries.Nucleic Acids Res.10: 7543–7559.

    PubMed  CAS  Google Scholar 

  • Ruiz-Carrillo, A., Affolter, M., and Renaud, J. 1983. Genomic organization of the genes coding for the 6 main histones of the chicken: Complete sequence of the H5 gene.J. Mol. Biol. 170: 843–860.

    PubMed  CAS  Google Scholar 

  • Ryoji, M., and Worcel, A. 1984. Chromatin assembly inXenopus oocytes:In vivo studies.Cell 37: 21–32.

    PubMed  CAS  Google Scholar 

  • Scheer, U., Hinssen, H., Franke, W. W., and Jockusch, B. M. 1984. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes.Cell 39: 111–122.

    PubMed  CAS  Google Scholar 

  • Schick, V. V., Belyaysky, A. V., Bavykin, S. G., and Mirzabekov, A. D. 1980. Primary organization of nucleosome core particles. Sequential arrangement of histones along DNA. J. Mol. Biol.139: 491–518.

    Google Scholar 

  • Schmidt, R. J., Richardson, C. B., Gillham, N. W., and Boynton, J. E. 1983. Sites of synthesis of chloroplast ribosomal proteinsin Chlamydomonas. J. Cell Biol.96: 1451–1463.

    CAS  Google Scholar 

  • Schnier, J., and Isono, K. 1982. The DNA sequence of the generpsA ofE. coli coding for ribosomal protein SI.Nucleic Acids Res.10: 1857–1865.

    PubMed  CAS  Google Scholar 

  • Schnier, J., Kimura, M., Foulaki, K., Subramanian, A. R., Isono, R., and Wittmann-Liebold, B. 1982. Primary structure ofE. coli ribosomal protein S 1 and of its generps A. Proc. Natl. Acad. Sci. USA 79: 1008–1011.

    CAS  Google Scholar 

  • Schofield, P. N., and Walker, I. O. 1982. Control of histone gene expression inPhysarum polycephalum. I. Protein synthesis during the cell cycle.J. Cell Sci. 57: 139–150.

    PubMed  CAS  Google Scholar 

  • Schultz, L. D., and Friesen, J. D. 1983. Nucleotide sequence of thetcml gene (ribosomal protein L3) ofSaccharomyces cerevisiae. J. Bacteriol.155: 8–14.

    CAS  Google Scholar 

  • Seale, R. L. 1981.In vivo assembly of newly synthesized histones.Biochemistry 20: 6432–6437.

    CAS  Google Scholar 

  • Seyedin, S. M., and Cole, R. D. 1981. Hl histones of trout.J. Biol. Chem. 256: 442–444.

    PubMed  CAS  Google Scholar 

  • Shih, R. J., Smith, L. D., and Keem, K. 1980. Rates of histone synthesis during early development ofRana pipiens. Dev. Biol.75: 329–342.

    CAS  Google Scholar 

  • Sierra, F., Lichtler, A., Marashi, F., Rickles, R., Van Dyke, T., Clark, S., Wells, J., Stein, G., and Stein, J. 1982. Organization of human histone genes.Proc. Natl. Acad. Sci. USA 79: 1795–1799.

    PubMed  CAS  Google Scholar 

  • Sierra, F., Stein, G., and Stein, J. 1983. Structure andin vitro transcription of a human H4 histone gene.Nucleic Acids Res.11: 7069–7086.

    PubMed  CAS  Google Scholar 

  • Simpson, R. T. 1978. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones.Biochemistry 17: 5524–5531.

    PubMed  CAS  Google Scholar 

  • Sittman, D. B., Chiu, I. M., Pan, C. J., Cohn, R. H., Kedes, L. H., and Marzluff, W. F. 1981. Isolation of two clusters of mouse histone genes.Proc. Natl. Acad. Sci. USA 78: 4078–4082.

    PubMed  CAS  Google Scholar 

  • Sittman, D. B., Graves, R. A., and Marzluff, W. F. 1983a. Histone mRNA concentrations are regulated at the level of transcription and mRNA degradation.Proc. Natl. Acad. Sci. USA 80: 1849–1853.

    PubMed  CAS  Google Scholar 

  • Sittman, D. B., Graves, R. A., and Marzluff, W. F. 1983b. Structure of a cluster of mouse histone genes.Nucleic Acids Res.11: 6679–6697.

    PubMed  CAS  Google Scholar 

  • Smith, M. M., and Andrésson, O. S. 1983. DNA sequences of yeast H3 and H4 histone genes from two non-allelic gene sets encode identical H3 and H4 proteins.J. Mol. Biol. 169: 663–690.

    PubMed  CAS  Google Scholar 

  • Spiker, S. 1982. Histone variants in plants. Evidence for primary structure variants differing in molecular weight.J. Biol. Chem. 257: 14250–14255.

    PubMed  CAS  Google Scholar 

  • Spinelli, G., Granguzza, F., Casano, C., and Burckhardt, J. 1979. Evidence for two different sets of histone genes active during embryogenesis of the sea urchinParacentrotus lividus. Nucleic Acids Res.6: 545–560.

    CAS  Google Scholar 

  • Spinelli, G., Albanese, I., Anello, L., Ciaccio, M., and Di Liegro, I. 1982. Chromatin structure of histone genes in sea urchin sperms and embryos.Nucleic Acids Res.10: 7977–7991.

    PubMed  CAS  Google Scholar 

  • Stein, A., and Bina, M. 1984. A model chromatin assembly system. Factors affecting nucleosome spacing.J. Mol. Biol. 178: 341–363.

    PubMed  CAS  Google Scholar 

  • Stephenson, E. C., Erba, H. P., and Gall, J. G. 1981. Histone gene clusters of the newtNotophthalmus viridescens are separated by long tracts of satellite DNA.Cell 24: 639–647.

    PubMed  CAS  Google Scholar 

  • Stoecker[, C. J., Beer, M., Wiggins, J. W., and Wierman, J. C. 1984. Histone positions within the nucleosome using platinum labeling and the scanning transmission electron microscope.J. Mol. Biol. 177: 483–505.

    Google Scholar 

  • Strausbaugh, L. D., and Weinberg, E. S. 1982. Polymorphism and stability in the histone gene cluster ofDrosophila melanogaster. Chromosoma (Berl.) 85: 489–506.

    CAS  Google Scholar 

  • Strickland, M., Strickland, W. N., Brandt, W. F., von Holt, C., Wittmann-Liebold, B., and Lehmann, A. 1978. The complete amino acid sequence of histone H2B(3) from sperm of the sea urchinParechinus angulosus. Eur. J. Biochem.89: 443–452.

    CAS  Google Scholar 

  • Sugarman, B. J., Dodgson, J. B., and Engel, J. D. 1983. Genomic organization, DNA sequence, and expression of chicken embryonic histone genes.J. Biol. Chem. 258: 9005–9016.

    PubMed  CAS  Google Scholar 

  • Sugita, M., and Sugiura, M. 1983. A putative gene of tobacco chloroplast coding for ribosomal protein similar toE. coli ribosomal protein S19.Nucleic Acids Res.11: 1913–1918.

    PubMed  CAS  Google Scholar 

  • Sures, I., Lowry, J., and Kedes, L. H. 1978. The DNA sequence of sea urchin(S. purpuratus) H2A, H2B and H3 histone coding and spacer regions.Cell 15: 1033–1044.

    PubMed  CAS  Google Scholar 

  • Suryanarayana, T., and Subramanian, A. R. 1984. Functions of the repeating homologous sequences in nucleic acid binding domain of ribosomal protein SI.Biochemistry 23: 1047–1051.

    PubMed  CAS  Google Scholar 

  • Tabata, T., Sasaki, K., and Iwabuchi, M. 1983. The structural organization and DNA sequence of a wheat histone H4 gene.Nucleic Acids Res.11: 5865–5875.

    PubMed  CAS  Google Scholar 

  • Tabata, T., Fukasawa, M., and Iwabuchi, M. 1984. Nucleotide sequence and genomic organization of a wheat histone H3 gene.Mol. Gen. Genet. 196: 397–400.

    CAS  Google Scholar 

  • Teem, J. L., Abovich, N., Kaufer, N. F., Schwindinger, W. F., Warner, J. R., Levy, A., Woolford, J., Leer, R. J., van Raamsdonk-Duin, M. M., Mager, W. H., Planta, R. J., Schultz, L., Friesen, J. D., Fried, H., and Rosbash, M. 1984. A comparison of yeast ribosomal protein gene DNA sequences.Nucleic Acids Res.12: 8295–8312.

    PubMed  CAS  Google Scholar 

  • Thoma, F., Bergman, L. W., and Simpson, R. T. 1984. Nuclease digestion of circular TRPIARSI chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions.J. Mol. Biol. 177: 715–733.

    PubMed  CAS  Google Scholar 

  • Turner, P. C., and Woodland, H. R. 1982. H3 and H4 histone cDNA sequence fromXenopus: A sequence comparison of H4 genes.Nucleic Acids Res.10: 3769–3780.

    PubMed  CAS  Google Scholar 

  • Turner, P. C., and Woodland, H. R. 1983. Histone gene number and organisation inXenopus: Xenopus borealis has a homogeneous major cluster.Nucleic Acids Res.11: 971–986.

    PubMed  CAS  Google Scholar 

  • Turner, P. C., Aldridge, T. C., Woodland, H. R., and Old, R. W. 1983. Nucleotide sequence of H1 histone genes fromXenopus laevis. A recently diverged pair of H1 genes and unusual HI pseudogene.Nucleic Acids Res.11: 4093–4107.

    PubMed  CAS  Google Scholar 

  • Dongen, W. M. A. M., de Laaf, L., Zaal, R., Moorman, A. F. M., and Destrée, O. H. J. 1981. The organization of the histone genes in the genome ofXepopus laevis. Nucleic Acids Res.9: 2297–2311.

    Google Scholar 

  • Dongen, W. M. A. M., Moorman, A. F. M., and Destrée, O. H. J. 1983. Histone gene expression in early development ofXenopus laevis. Differentiation 24: 226–233.

    Google Scholar 

  • Vaslet, C. A., O’Connell, P., Izquierdo, M., and Rosbash, M. 1980. Isolation and mapping of a cloned ribosomal protein gene of Drosophila melanogaster. Nature (London)285: 674–676.

    CAS  Google Scholar 

  • Vayda, N. E., Rogers, A. E., and Flint, S. J. 1983. The structure of nucleoprotein cores released from adenovirions.Nucleic Acids Res.11: 441–460.

    PubMed  CAS  Google Scholar 

  • Vester, B., and Garrett, R. A. 1984. Structure of a protein L23-RNA complex located at the A-site domain of the ribosomal peptidyl transferase centre.J. Mol. Biol. 179: 431–452.

    PubMed  CAS  Google Scholar 

  • Wallis, J. W., Hereford, L., and Grunstein, M. 1980. Histone H2B genes of yeast(Saccharomyces cerevisiae) encode two different proteins.Cell 22: 799–805.

    PubMed  CAS  Google Scholar 

  • Weisbrod, S. 1982. Active chromatin.Nature (London) 297: 289–295.

    CAS  Google Scholar 

  • Weisbrod, S., and Weintraub, H. 1981. Isolation of actively transcribed nucleosomes using immobilized HMG14 and 17 and an analysis of a-globin chromatin.Cell 23: 391–400.

    PubMed  CAS  Google Scholar 

  • Wells, D., and Kedes, L. 1985. Structure of a human histone cDNA: Evidence that basally expressed histone genes have intervening sequences and encode polyadenylated mRNAs.Proc. Natl. Acad. Sci. USA 82: 2834–2838.

    PubMed  CAS  Google Scholar 

  • West, M. H. P., and Bonner, W. M. 1980. Histone 2A, a heteromorphous family of eight protein species.Biochemistry 19: 3238–3245.

    PubMed  CAS  Google Scholar 

  • Wilhelm, M. L., and Wilhelm, F. X. 1984. A transposon-like DNA fragment interrupts aPhysarum polycephalum histone H4 gene.FEBS Lett.168: 249–254.

    PubMed  CAS  Google Scholar 

  • Wilhelm, M. L., Toublan, B., Jalouzot, R., and Wilhelm, F. X. 1984. Histone H4 gene is transcribed in S phase but also late in G2 phase in Physarum polycephalum. EMBO J.3: 2659–2662.

    PubMed  CAS  Google Scholar 

  • Wittmann-Liebold, B., Ashman, K., and Dzionara, M. 1984. On the statistical significance of homologous structures among theEscherichia coli ribosomal proteins.Mol. Gen. Genet. 196: 439–448.

    PubMed  CAS  Google Scholar 

  • Woodland, H. R. 1980. Histone synthesis during the development ofXenopus. FEBS Lett.121: 1–7.

    CAS  Google Scholar 

  • Woolford, J., and Rosbash, M. 1981. Ribosomal protein rp39(10–78), rp39(11–40), rp5l, and rpS2 are not contiguous to other ribosomal protein genes inSaccharomyces cerevisiae genome.Nucleic Acids Res.9: 5021–5036.

    PubMed  CAS  Google Scholar 

  • Woudt, L., Pastink, A., Kempers-Veenstra, A. E., Jansen, A. E. M., Mager, W. H., and Planta, R. J. 1983. The genes Coding for histone H3 and H4 inNeurospora crassa are unique and contain intervening sequences.Nucleic Acids Res.11: 5347–5360.

    PubMed  CAS  Google Scholar 

  • Wu, R. S., and Bonner, W. M. 1981. Separation of basal histone synthesis from S-phase histone synthesis in dividing cells.Cell 27: 321–330.

    PubMed  CAS  Google Scholar 

  • Yaguchi, M., Roy, C., and Seligy, V. L. 1979. Complete amino acid sequence of goose erythrocyte H5 histone and the homology between HI and H5 histones.Biochem. Biophys. Res. Commun. 90: 1400–1406.

    PubMed  CAS  Google Scholar 

  • Yaguchi, M., Rollin, C. F., Roy, C., and Nazar, R. N. 1984. The 5S RNA binding protein from yeast(Saccharomyces cerevisiae) ribosomes. An RNA binding sequence in the carboxyl-terminal region.Eur. J. Biochem. 139: 451–457.

    PubMed  CAS  Google Scholar 

  • Yukioka, M., Sasaki, S., Henmi, S., Matsuo, M., Hatayama, T., and Inoue, A. 1984. Transcribing chromatin is not preferentially enriched with acetylated histones.FEBS Lett.158: 281–284.

    Google Scholar 

  • Zalenskaya, I. A., Pospelov, V. A., Zalensky, A. O., and Vorob’ev, V. I. 1981. Nucleosomal structure of sea urchin and starfish sperm chromatin. Histone H2B is possibly involved in determining the length of linker DNA.Nucleic Acids Res.9: 473–487.

    PubMed  CAS  Google Scholar 

  • Zassenhaus, H. P., Martin, N. C., and Butow, R. A. 1984. Origins of transcripts of the yeast mitochondrialvarl gene.J. Biol. Chem. 259: 6019–6027.

    PubMed  CAS  Google Scholar 

  • Zernik, M., Heintz, N., Boime, I., and Roeder, R. G. 1980.Xenopus laevis histone genes: Variant H1 genes are present in different clusters.Cell 22: 807–816.

    CAS  Google Scholar 

  • Zhong, R., Roeder, R. G., and Heintz, N. 1983. The primary structure and expression of four cloned human histone genes.Nucleic Acids Res.11: 7409–7425.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dillon, L.S. (1987). Nucleic Acid-Associated Protein Genes. In: The Gene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2007-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2007-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2009-6

  • Online ISBN: 978-1-4899-2007-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics