Skip to main content

Major Features of the Gene

  • Chapter
The Gene
  • 567 Accesses

Abstract

Over the years, the gene has received numerous definitions, many of which became widely accepted. It has long been known as the unit of inheritance, or the factor that results in a given hereditary trait, definitions that continue in use today; it was also considered a point, or locus, on a chromosome that serves in the foregoing capacity. Later, as the molecular aspects of cell function began to unfold, a better understanding of the nature of the gene was gained, and the concept of “one gene, one protein” came into existence. Then, when proteins were perceived as being constructed of several subunits, each the product of a separate locus, that view became modified to “one gene, one polypeptide.” All these ideas are both sound and unsound; even the most recent, which defines a gene as a sequence in the nucleic acid of the genome, contains an element of weakness, which will become apparent as the discussion of gene structure proceeds immediately below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Adams, J. M., and Cory, S. 1975. Modified nucleosides and bizarre 5’-termini in mouse myeloma mRNA.Nature (London) 255: 28–33.

    Article  CAS  Google Scholar 

  • An, G., and Friesen, J. D. 1980. Characterization of promoter-cloning plasmids: Analysis of operon structure in therif region ofEscherichia coli and isolation of an enhanced internal promoter mutant.J. Bacteriol. 144: 904–916.

    PubMed  CAS  Google Scholar 

  • Andrews, C., and Richardson, J. P. 1985. Transcription termination factor rho mediates simultaneous release of RNA transcripts and DNA template from complexes withEscherichia coli RNA polymerase.J. Biol. Chem.260: 5826–5831.

    CAS  Google Scholar 

  • Artavanis-Tsakonas, S., Schedl, P., Tschudi, C., Pirrotta, V., Steward, R., and Gehring, W. J. 1977. The 5S genes ofDrosophila melanogaster. Cell 12: 1057–1067.

    Article  CAS  Google Scholar 

  • Astell, C. R., Thomson, M., Merchlinsky, M., and Ward, D. C. 1983. The complete DNA sequence of minute virus of mice, an autonomous parvovirus.Nucleic Acids Res.11: 999–1018.

    Article  PubMed  CAS  Google Scholar 

  • Baralle, F. E. 1983. The functional significance of leader and trailer sequences in eukaryotic mRNAs.Int. Rev. Cytol. 81: 71–106.

    Article  PubMed  CAS  Google Scholar 

  • Barik, S., Bhattacharya, P., and Das, A. 1985. Autogenous regulation of transcription termination factor rho.J. Mol. Biol. 182: 495–508.

    Article  PubMed  CAS  Google Scholar 

  • Barsh, G. S., Seeburg, P. H., and Gelinas, R. E. 1983. The human growth hormone gene family: Structure and evolution of the chromosomal locus.Nucleic Acids Res.11: 3939–3958.

    Article  PubMed  CAS  Google Scholar 

  • Baum, H. J., Livneh, Y., and Wensink, P. C. 1983. Homology maps of theDrosophila a-tubulin gene family: One of the four genes is different.Nucleic Acids Res.11: 5569–5587.

    Article  PubMed  CAS  Google Scholar 

  • Bear, D. G., Andrews, C. L., Singer, J. D., Morgan, W. D., Grant, R. A., von Hippel, P. H., and Platt, T. 1985.Escherichia coli transcription termination factor p has a two-domain structure in its activated form.Proc. Natl. Acad. Sci. USA 82: 1911–1915.

    CAS  Google Scholar 

  • Bennett, P. M., Grinsted, J., Choi, C. L., and Richmond, M. H. 1978. Characterisation of Tn501, a transposon determining resistance to mercuric ions.Mol. Gen. Genet. 159: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Benoist, C., and Chambon, P. 1981.In vivo sequence requirements of the SV40 early promoter region.Nature (London) 290: 304–310.

    CAS  Google Scholar 

  • Berman, M. L., and Landy, A. 1979. Promoter mutations in the transfer RNA genetyrT ofEscherichia coli. Proc. Natl. Acad. Sci. USA 76: 4303–4307.

    Article  CAS  Google Scholar 

  • Beynon, J., Cannon, M., Buchanan-Wollaston, V., and Cannon, F. 1983. Thenif promoters ofKlebsiella pneumoniae have a characteristic primary structure.Cell 34: 665–671.

    Article  PubMed  CAS  Google Scholar 

  • Birnstiel, M. L., Busslinger, M., and Strub, K. 1985. Transcription termination and 3’ processing: The end is in site!Cell 41: 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Boardman, M., Basi, G. S., and Storti, R. V. 1985. Multiple polyadenylation sites in aDrosophila tropomyosin gene are used to generate functional mRNAs.Nucleic Acids Res.13: 1763–1776.

    Article  Google Scholar 

  • Bonnewell, V., Fowler, R. F., and Skinner, D. M. 1983. An inverted repeat borders a fivefold amplification in satellite DNA.Science 221: 862–865.

    Article  PubMed  CAS  Google Scholar 

  • Boorstein, W. R., Vamvakopoulos, N. C., and Fiddes, J. C. 1982. Human chorionic gonadotropin 3-subunit is encoded by at least eight genes arranged in tandem and inverted pairs.Nature (London) 300: 419–422.

    Article  CAS  Google Scholar 

  • Brown, D. D., Wensink, P. C., and Jordan, E. 1971. Purification and some characteristics of the 5S DNA fromXenopus laevis. Proc. Natl. Acad. Sci. USA 68: 3175–3179.

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston, V., Cannon, M. C., and Cannon, F. C. 1982. The use of clonednif (nitrogen fixation) DNA to investigate transcriptional regulation ofnif expression inKlebsiella pneumoniae. Mol. Gen. Genet.184: 102–106.

    Article  Google Scholar 

  • Calabretta, B., Robberson, D. L., Maizel, A. L., and Saunders, G. F. 1981. mRNA in human cells contains sequences complementary to theAlu family of repeated DNA.Proc. Natl. Acad. Sci. USA 78: 6003–6007.

    Google Scholar 

  • Cassan, M., Ronceray, J., and Patte, J. C. 1983. Nucleotide sequence of the promoter region of theE. coli lysC gene.Nucleic Acids Res.11: 6157–6166.

    Article  PubMed  CAS  Google Scholar 

  • Childs, G., Nocente-McGrath, C., Lieber, T., Holt, C., and Knowles, J. A. 1982. Sea urchin(Lytechinus pictus) late-stage histoneH3 andH4 genes: Characterization and mapping of a clustered but nontandemly linked multigene family.Cell 31: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Cce net, M., Gannon, F., Hen, R., Maroteaux, F. P., and Chambon, P. 1979. Organization and sequence studies of the 17-piece chicken conalbumin gene.Nature (London) 282: 567–574.

    Article  Google Scholar 

  • Cohn, R. H., Lowry, J. C., and Kedes, L. H. 1976. Histone genes of the sea urchin(S. purpuratus) cloned inE. coli: Order, polarity, and strandedness of the five histone-coding and spacer regions.Cell 9: 147–161.

    Article  PubMed  CAS  Google Scholar 

  • Courage-Tebbe, U., Döring, H. P., Federoff, N., and Starlinger, P. 1983. The controlling elementDs at theShrunken locus inZea mays: Structure of the unstablesh-m5933 allele and several revertants.Cell 34: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, E. H., and Britten, R. J. 1973. Organization, transcription, and regulation in the animal genome.Q. Rev. Biol. 48: 565–613.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, E. H., and Posakony, J. W. 1982. Repetitive sequence transcripts in development.Nature (London) 297: 633–635.

    Article  CAS  Google Scholar 

  • deBoer, H., Comstock, L. J., and Vasser, M. 1983. Thetac promoter: A functional hybrid derived from thetrp andlac promoters.Proc. Natl. Acad. Sci.USA 80: 21–25.

    Article  CAS  Google Scholar 

  • Cruz, F., and Grinsted, J. 1982. Genetic and molecular characterization of Tn21, a multiple resistance transposon from R100.1.J. Bacteriol. 151: 222–228.

    PubMed  Google Scholar 

  • Dillon, L. S. 1978.The Genetic Mechanism and the Origin of Life, New York, Plenum Press. Dillon, L. S. 1983.The Inconstant Gene, New York, Plenum Press.

    Google Scholar 

  • Diver, W. P., Grinsted, J., Fritzinger, D. C., Brown, N. L., Altenbucher, J., Rogowsky, P., and Schmitt, R. 1983. DNA sequences of and complementation by thetnpR genes of Tn 21, Tn 501, and Tn 1721.Mol. Gen. Genet. 191: 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi, A., Church, G. M., Tonegawa, S., and Gilbert, W. 1985. B lineage-specific interactions of an immunoglobulin enhancer with cellular factorsin vivo. Science 227: 134–140.

    CAS  Google Scholar 

  • Espin, G., Alarez-Morales, A., Cannon, F., Pixon, R., and Merrick, M. 1982. Cloning of theglnA,ntrB andntrC genes ofKlebsiella pneumoniae and studies of their role in regulation of the nitrogen fixation(nif) gene cluster.Mol. Gen. Genet. 186: 518–524.

    Article  PubMed  CAS  Google Scholar 

  • Etcheverry, T., Colby, D., and Guthrie, C. 1979. A precursor to a minor species of yeast tRNAser contains an intervening sequence.Cell 18: 11–26.

    Article  PubMed  CAS  Google Scholar 

  • Farabaugh, P. J., and Fink, G. R. 1980. Insertion of the eukaryotic transposable elementTyl creates a 5-base pair duplication.Nature (London) 286: 352–356.

    Article  CAS  Google Scholar 

  • Feagin, J. E., Setzer, D. R., and Schimke, R. T. 1983. A family of repeated DNA sequences, one of which resides in the second intervening sequence of the mouse dihydrofolate reductase gene.J. Biol. Chem. 258: 2480–2487.

    PubMed  CAS  Google Scholar 

  • Federoff, N. V. 1979. On spacers.Cell 16: 697–710.

    Article  Google Scholar 

  • Files, J. G., Carr, S., and Hirsh, D. 1983. Actin gene family ofCaenorhabditis elegans. J. Mol. Biol.164: 355–375.

    Article  CAS  Google Scholar 

  • Finnegan, D. J., Rubin, G. M., Young, M. W., and Hogness, D. S. 1977. Repeated gene families inDrosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol.42: 1053–1063.

    Article  Google Scholar 

  • Fort, P., Marty, L., Piechaczyk, M., El Sabrouty, S., Dani, C., Jeanteur, P., and Blanchard, J. M. 1985. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphatedehydrogenase multigenic family.Nucleic Acids Res.13: 1431–1442.

    Article  PubMed  CAS  Google Scholar 

  • Franck, A., Guilley, H., Jonard, G., Richards, K., and Hirth, L. 1980. Nucleotide sequence of cauliflower mosaic virus DNA.Cell 21: 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Gebhard, W., Meitinger, T., Höchtl, J., and Zachau, H. G. 1982. A new family of interspersed repetitive DNA sequences in the mouse genome.J. Mol. Biol. 157: 453–471.

    Article  PubMed  CAS  Google Scholar 

  • Georgiev, O., and Bimstiel, M. L. 1985. The conserved CAAGAAAGA spacer sequence is an essential element for the formation of 3’ termini of the sea urchin 113 histone mRNA by RNA processing.EMBO J.4: 481–489.

    PubMed  CAS  Google Scholar 

  • Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J., and Kam, J. 1982. Nucleotide sequence of tobacco mosaic virus RNA.Proc. Natl. Acad. Sci. USA 79: 5818–5822.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, H. M., Olson, M. V., and Hall, B. D. 1977. Nucleotide sequence of a mutant eukaryotic gene: The yeast tyrosine-inserting ochre suppressorSUP4-o. Proc. Natl. Acad. Sci. USA 74: 5453–5457.

    Article  CAS  Google Scholar 

  • Green, C. J., and Vold, B. S. 1983. Sequence analysis of a cluster of twenty-one tRNA genes inBacillus subtilis. Nucleic Acids Res.11: 5763–5774.

    Article  CAS  Google Scholar 

  • Grunstein, M., and Hogness, D. S. 1975. Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene.Proc. Natl. Acad. Sci. USA 72: 3961–3965.

    Article  PubMed  CAS  Google Scholar 

  • Gruss, P., Lai, C. J., Dhar, R., and Khoury, G. 1979. Splicing as a requirement for biogenesis of functional 16S mRNA of simian virus 40.Proc. Natl. Acad. Sci. USA 76: 4317–4321.

    Article  PubMed  CAS  Google Scholar 

  • Gruss, P., Efstratiadis, A., Karathanasis, S., König, M., and Khoury, G. 1981. Synthesis of stable unspliced mRNA from an intronless simian virus 40-rat preproinsulin gene recombinant.Proc. Natl. Acad. Sci. USA 78: 6091–6095.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, D. K., and McClure, W. R. 1983. Compilation and analysis ofEscherichia coli promoter DNA sequences.Nucleic Acids Res.11: 2237–2255.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff, S., Kelly, J. D., and Cohen, E. H. 1983. Transcription terminates in yeast distal to a control sequence.Cell 33: 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Hereford, L., Fahrner, K., Woolford, J., Rosbash, M., and Kaback, D. B. 1979. Isolation of yeast histone genes H2A and H2B.Cell 18: 1261–1271.

    Article  PubMed  CAS  Google Scholar 

  • Hill, S., Kennedy, C., Kavanagh, E., Goldberg, R. B., and Hamm, R. 1981. Nitrogen fixation gene(nifL) involved in oxygen regulation of nitrogenase synthesis inK. pneumoniae. Nature (London) 290: 424–426.

    Article  CAS  Google Scholar 

  • Hinton, D. M., and Musso, R. E. 1983. Specificin vitro transcription of the insertion sequence IS2.J. Mol. Biol. 169: 53–81.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, W. M., Platt, T., and Rosenberg, M. 1983. Termination of transcription inE. coli. Cell 32: 1029–1032.

    CAS  Google Scholar 

  • Hung, M. C., and Wensink, P. C. 1981. The sequence of theDrosophila melanogaster gene for yolk protein 1.Nucleic Acids Res.9: 6407–6419.

    Article  PubMed  CAS  Google Scholar 

  • Irani, M. H., Grosz, L., and Adhya, S. 1983. A control element within a structural gene: Thegal operon ofEscherichia coli. Cell 32: 783–788.

    CAS  Google Scholar 

  • Johansen, H., Schümperli, D., and Rosenberg, M. 1984. Affecting gene expression by altering the length and sequence of the 5’ leader.Proc. Natl. Acad. Sci. USA 81: 7698–7702.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L. D., Henderson, A. S., and Atwood, K. C. 1974. Location of the genes for SS RNA in the human chromosome complement.Cytogenet. Cell Genet. 13: 103–105.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. F., and Abelson, J. 1983. The yeast tRNAEYr gene intron is essential for correct modification of its tRNA product.Nature 302: 681–687.

    Article  PubMed  CAS  Google Scholar 

  • Kaine, B. P., Gupta, R., and Woese, C. R. 1983. Putative introns in tRNA genes of prokaryotes.Proc. Natl. Acad. Sci. USA 80: 3309–3312.

    Article  PubMed  CAS  Google Scholar 

  • Kedes, L. H. 1979. Histone genes and histone messengers.Annu. Rev. Biochem. 48: 837–870.

    Article  PubMed  CAS  Google Scholar 

  • Khoury, G., and Gruss, P. 1983. Enhancer elements.Cell 33: 313–314.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner, N. 1977. Translocatable elements in procaryotes.Cell 11: 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner, N. 1981. Transposable elements in procaryotes.Annu. Rev. Genet. 15: 341–404.

    Article  PubMed  CAS  Google Scholar 

  • Klemenz, R., Stillman, D. J., and Geiduschek, E. P. 1982. Specific interactions ofSaccharomyces cerevisiae proteins with a promoter region of eukaryotic tRNA genes.Proc. Nall. Acad. Sei. USA 79: 6191–6195.

    Article  CAS  Google Scholar 

  • Krayev, A. S., Kramerov, D. A., Skryabin, K. G., Ryskov, A. P., Bayev, A. A., and Georgiev, G. P. 1980. The nucleotide sequence of the ubiquitous repetitive DNA sequence B 1 complementary to the most abundant class of mouse fold-back RNA.Nucleic Acids Res.8: 1201–1215.

    Article  PubMed  CAS  Google Scholar 

  • Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. 1982. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence ofTetrahymena. Cell 31: 147–157.

    Article  CAS  Google Scholar 

  • Kurjan, J., and Herskowitz, I. 1982. Structure of a yeast pheromone gene(MFa): A putative a-factor precursor contains four tandem copies of mature a-factor.Cell 30: 933–943.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C. J., and Khoury, G. 1979. Deletion mutants of simian virus 40 defective in biosynthesis of late viral mRNA.Proc. Natl. Acad. Sci. USA 76: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Langford, C. J., and Gallwitz, D. 1983. Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts,Cell 33: 519–527.

    Article  PubMed  CAS  Google Scholar 

  • Laski, F. A., Belagaje, R., RajBhandary, U. L., and Sharp, P. A. 1982. An amber suppressing tRNA gene derived by site-specific mutagenesis: Cloning and function in mammalian cells.Proc. Natl. Acad. Sci. USA 79: 5813–5817.

    Article  PubMed  CAS  Google Scholar 

  • Lau, L. F., Roberts, J. W., and Wu, R. 1982. Transcription terminates at AtR, in three clusters.Proc. Natl. Acad. Sci. USA 79: 6171–6175.

    Article  PubMed  CAS  Google Scholar 

  • Lifton, R. P., Goldberg, M. L., Karp, R. W., and Hogness, D. S. 1977. The organization of histone genes inDrosophila melanogaster: Functional and evolutionary implications.Cold Spring Harbor Symp. Quant. Biol. 42: 1047–1051.

    Article  Google Scholar 

  • Lopez, L. C., Frazier, N. L., Su, C. J., Kumar, A., and Saunders, G. F. 1983. Mammalian pancreatic preproglucagon contains three glucagon-related peptides.Proc. Natl. Acad. Sci. USA 80: 5485–5489.

    Article  PubMed  CAS  Google Scholar 

  • Lueders, K. K., and Paterson, B. M. 1982. A short interspersed repetitive element found near some mouse structural genes.Nucleic Acids Res.10: 7715–7729.

    Article  PubMed  CAS  Google Scholar 

  • Machida, C., Machida, Y., Wang, H. C., Ishizaki, K., and Ohtsubo, E. 1983. Repression of cointegration ability of insertion element IS I by transcriptional readthrough from flanking regions.Cell 34: 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Mackie, G. A. and Parsons, G. D. 1983. Tandem promoters in the gene for ribosomal protein S20.J. Biol. Chem. 258: 7840–7846.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R. 1983. The exon: intron structure of some mitochondrial genes and its relation to mitochondrial evolution.Int. Rev. Cytol. 82: 1–98.

    Article  PubMed  CAS  Google Scholar 

  • Malissen, M., Hunkapiller, T., and Hood, L. 1983. Nucleotide sequence of a light chain gene of the mouse I-A subregion: AV.Science 221: 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Marian, B., and Wintersberger, U. 1980. Histone synthesis during sporulation of yeast.FEBS Lett.117: 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Mason, A. J., Evans, B. A., Cox, D. R., Shine, J., and Richards, R. I. 1983. Structure of mouse kallikrein gene family suggests a role in specific processing of biologically active peptides.Nature (London) 303: 300–307.

    Article  CAS  Google Scholar 

  • Mason, J. O., Williams, G. T., and Neuberger, M. S. 1985. Transcription cell type specificity is conferred by an immunoglobulin VH gene promoter that includes a functional consensus sequence.Cell 41: 479–487.

    Article  PubMed  CAS  Google Scholar 

  • Mason, P. J., Jones, M. B., Elkington, J. A., and Williams, J. G. 1985. Polyadenylation of theXenopus 131-globin mRNA at a downstream minor site in the absence of the major site and utilization of an AAUACA polyadenylation signal.EMBO J.4: 205–211.

    PubMed  CAS  Google Scholar 

  • McGinnis, W., Shermoen, A. W., and Beckendorf, S. K. 1983. A transposable element inserted just 5’ to aDrosophila glue protein gene alters gene expression and chromation structure.Cell 34: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • McLauchlan, J., Gaffney, D., Whitton, J. L. and Clements, J. B. 1985. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3’ termini.Nucleic Acids Res.13: 1347–1368.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, J. R., Chang, S.-Y., and Chang, S. 1982. Transcriptional analysis of theBacillus licheniformis penP gene.Nucleic Acids Res.10: 3905–3919.

    Article  PubMed  CAS  Google Scholar 

  • McLean, P., and Dixon, R. 1981. Requirement ofnip gene for production of wild-type nitrogenase enzyme inKlebsiella pneumoniae. Nature (London) 292: 655–656.

    Article  CAS  Google Scholar 

  • Mercola, M., Wang, X. F., Olsen, J., and Calame, K. 1983. Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus.Science 221: 663–665.

    Article  PubMed  CAS  Google Scholar 

  • Mercola, M., Goverman, J., Mirell, G., and Calame, K. 1985. Immunoglobulin heavy-chain enhancer requires one or more tissue-specific factors.Science 227: 266–270.

    Article  PubMed  CAS  Google Scholar 

  • Merrick, M., Hill, S., Hennecke, H., Hahn, M., Dixon, R., and Kennedy, C. 1982. Repressor properties of thenifL gene product inKlebsiella pneumoniae Mol. Gen. Genet.185: 75–81.

    Article  CAS  Google Scholar 

  • Meunier-Rotival, M., Soriano, P., Cuny, G., Strauss, F., and Bernardi, G. 1982. Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA.Proc. Natl. Acad. Sci. USA 79: 355–359.

    Article  PubMed  CAS  Google Scholar 

  • Monte, C., Fisher, E. F., Caruthers, M. H., and Berk, A. J. 1983. Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3’ consensus sequence AAUAAA.Nature (London) 305: 600–605.

    Article  Google Scholar 

  • Moreno, F., Fowler, A. V., Hall, M., Silhavy, T. J., Zabin, I., and Schwartz, M. 1980. A signal sequence is not sufficient to lead ß-galactosidase out of the cytoplasm.Nature (London) 286: 356–358.

    Article  CAS  Google Scholar 

  • Morgan, E. A., Ikemura, T., Lindahl, L., Fallon, A. M., and Nomura, M. 1978. Some rRNA operons inE. coli have tRNA genes at their distal ends.Cell 13: 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, W. D., Bear, D. G., and von Hippel, P. H. 1983. Rho-dependent termination of transcription. I. Identification and characterization of termination sites for transcription from the bacteriophage APR promoter.J. Biol. Chem. 285: 9553–9564.

    Google Scholar 

  • Nomoto, A., Omata, T., Toyoda, H., Kuge, S., Horie, H., Kataoka, Y., Genba, Y., Nakano, Y., and Imura, N. 1982. Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome.Proc. Natl. Acad. Sci. USA 79: 5793–5797.

    Article  PubMed  CAS  Google Scholar 

  • Nudel, U., Katcoff, D., Zakut, R., Shani, M., Carmon, Y., Finer, M., Czosnek, H., Ginsburg, I., and Yaffe, D. 1982. Isolation and characterization of rat skeletal muscle and cytoplasmic actin genes.Proc. Natl. Acad. Sci. USA 79: 2763–2767.

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara, N., Moriya, S., and Yoshikawa, H. 1983. Structure and organization of rRNA operons in the region of the replication origin of theBacillus subtilis chromosome.Nucleic Acids Res.11: 6301–6318.

    Article  PubMed  CAS  Google Scholar 

  • O’Hare, K., and Rubin, G. M. 1983. Structures of P transposable elements and their sites of insertion and excision in theDrosophila melanogaster genome.Cell 34: 25–35.

    Article  PubMed  Google Scholar 

  • Ohkubo, H., Vogeli, G., Mudryj, M., Avvedimento, V. E., Sullivan, M., Pastan, I., and de Crombrugghe, B. 1980. Isolation and characterization of overlapping genomic clones covering the chicken a2 (type I) collagen gene.Proc. Natl. Acad. Sci. USA 77: 7059–7063.

    Article  PubMed  CAS  Google Scholar 

  • Ono, Y., Onda, H., Sasada, R., Igarashi, K., Sugino, Y., and Nishioka, K. 1983. The complete nucleotide sequences of the cloned hepatitis B virus DNA: Subtypes adr and adw.Nucleic Acids Res.11: 1747–1757.

    Article  PubMed  CAS  Google Scholar 

  • Orkin, S. H., Cheng, T. C., Antonarakis, S. E., and Kazazian, H. H. 1985. Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human 13-globin gene.EMBO J.4: 453–456.

    PubMed  CAS  Google Scholar 

  • Osheim, Y. N., and Miller, O. L. 1983. Novel amplification and transcriptional activity of chorion genes inDrosophila melanogaster follicle cells.Cell 33: 543–553.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, W. R., Mukai, T., and Morrow, J. F. 1981. Repeated DNA sequences near the 5’-end of the silk fibroin gene.J. Biol. Chem. 256: 4033–4041.

    PubMed  CAS  Google Scholar 

  • Peffley, D. M., and Sogin, M. L. 1981. A putative tRNATm gene cloned fromDictyostelium discoideum: Its nucleotide sequence and association with repetitive DNA.Biochemistry 20: 4015–4021.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini, M., Manning, J., and Davidson, N. 1977. Sequence arrangement of the rDNA ofDrosophila melanogaster. Cell 10: 213–224.

    Article  CAS  Google Scholar 

  • Perry, R. P., and Scherrer, K. 1975. The methylated constituents of globin mRNA.FEBS Lett.57: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Piette, J., Nyunoya, H., Lusty, C. J., Cunin, R., Weyens, G., Crabeel, M., Charlier, D., Glansdorff, N., and Piérard, A. 1984. DNA sequence of thecarA gene and the control region ofcarAB: Tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase inEscherichia coli K-12.Proc. Natl. Acad. Sci. USA 81: 4134–4138.

    Article  PubMed  CAS  Google Scholar 

  • Platt, T. 1981. Termination of transcription and its regulation in the tryptophan operon ofE. coli. Cell 24: 1023.

    Google Scholar 

  • Plotch, S. J., Bouloy, M., Ulmanen, I., and Krug, R. M. 1981. A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primer that initiates viral RNA transcription.Cell 23: 847–858.

    Article  PubMed  CAS  Google Scholar 

  • Post, L. E., Arfsten, A. E., Reusser, F., and Nomura, M. 1978. DNA sequences of promoter regions for thestr andspc ribosomal protein operons inE. coli. Cell 15: 215–229.

    CAS  Google Scholar 

  • Post, L. E., Strycharz, G. D., Nomura, M., Lewis, H., and Dennis, P. P. 1979. Nucleotide sequence of the ribosomal protein gene cluster adacent to the gene for RNA polymerase subunit 13 inEscherichia coli. Proc. Natl. Acad. Sci. USA 76: 1697–1701.

    Article  CAS  Google Scholar 

  • Procunier, J. D., and Tartof, K. D. 1976. Restriction map of 5S RNA genes ofDrosophila melanogaster. Nature (London) 263: 255–257.

    Article  CAS  Google Scholar 

  • Robinson, R. R., and Davidson, N. 1981. Analysis of aDrosophila tRNA gene cluster: Two tRNALU genes contain intervening sequences.Cell 23: 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, M., and Court, D. 1979. Regulatory sequences involved in the promotion and termination of RNA transcription.Annu. Rev. Genet. 13: 319–353.

    Article  PubMed  CAS  Google Scholar 

  • Ruberti, I., Fragapane, P., Beccari, E., Amaldi, F., and Bozzoni, I. 1982. Characterization of histone genes isolated fromXenopus laevis andXenopus tropicalis genomic libraries.Nucleic Acids Res.10: 7543–7559.

    Article  PubMed  CAS  Google Scholar 

  • Schibler, U., Pittet, A. C., Young, R. A., Hagenbuchle, O., Tosi, M., Gellman, S., and Wellauer, P. K. 1982. The mouse a-amylase multigene family. Sequence organization of members expressed in the pancreas, salivary gland, and liver.J. Mol. Biol. 155: 247–266.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, R., Bernhard, E., and Mattes, R. 1979. Characterisation of Tn1721, a new transposon containing tetracycline resistance genes capable of amplification.Mol. Gen. Genet. 172: 53–65.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, I., Klotsky, R. A., Elseviers, D., Gallagher, P. J., Krauskopf, M., Siddiqui, M. A. Q., Wong, J. F. H., and Roe, B. A. 1983. Molecular cloning and sequencing ofpheU a gene forEscherichia coli tRNAPne Nucleic Acids Res.11: 4379–4389.

    CAS  Google Scholar 

  • Sekiya, T., Gait, M. J., Noris, K., Ramamoorthy, B., and Khorana, G. 1976. The nucleotide sequence in the promoter region of the gene for anEscherichia coli tyrosine transfer ribonucleic acid.J. Biol. Chem. 251: 4481–4489.

    PubMed  CAS  Google Scholar 

  • Sharp, P. M. 1985. Does the `non-coding’ strand code?Nucleic Acids Res.13: 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  • Singer, M. F., 1982a. SINES and LINES: Highly repeated short and long interspersed sequences in mammalian genomes.Cell 28: 433–434.

    Article  PubMed  CAS  Google Scholar 

  • Singer, M. F., 1982b. Highly repeated sequences in mammalian genomes.Int. Rev. Cytol. 76: 67–112.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R. K., and Singh, H. N. 1981. Genetic analysis of thehet andnif genes in the blue-green algaNostoc muscorum. Mol. Gen. Genet.184: 531–535.

    Article  CAS  Google Scholar 

  • Smith, M. M., and Andrésson, O. S. 1983. DNA sequences of yeast H3 and H4 histone genes from two non-allelic gene sets encode identical H3 and H4 proteins.J. Mol. Biol. 169: 663–690.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. M., and Murray, K. 1983. Yeast H3 and H4 histone messenger RNAs are transcribed from two non-allelic gene sets.J. Mol. Biol. 169: 641–661.

    Article  PubMed  CAS  Google Scholar 

  • Spradling, A. C., and Mahowald, A. P. 1980. Amplification of genes for chorion proteins during oogenesis inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 77: 1096–1100.

    Article  CAS  Google Scholar 

  • Standring, D. N., Venegas, A., and Rutter, W. J. 1981. Yeast tRNAkeu gene transcribed and spliced in a HeLa cell extract.Proc. Natl. Acad. Sci. USA 78: 5963–5967.

    Article  PubMed  CAS  Google Scholar 

  • Stassi, D. L., Dunn, J. J., and Lacks, S. A. 1982. Nucleotide sequence of DNA controlling expression of genes for maltosaccharide utilization inStreptococcus pneumoniae. Gene 20: 359–366.

    Article  CAS  Google Scholar 

  • Stephenson, E. C., Erba, H. P., and Gall, J. G. 1981. Histone gene clusters of the newtNotophthalmus are separated by long tracts of satellite DNA.Cell 24: 639–647.

    Article  PubMed  CAS  Google Scholar 

  • Swift, G. H., Dagom, J. C., Ashley, P. L., Cummings, S. W., and MacDonald, R. J. 1982. Rat pancreatic kallikrein mRNA: Nucleotide sequence and amino acid sequence of the encoded preproenzyme.Proc. Natl. Acad. Sci. USA 79: 7263–7267.

    Article  PubMed  CAS  Google Scholar 

  • Taussig, R., and Carlson, M. 1983. Nucleotide sequence of the yeastSUC2 gene for invertase.Nucleic Acids Res.11: 1943–1954.

    Article  PubMed  CAS  Google Scholar 

  • Treisman, R., Novak, U., Favaloro, J., and Kamen, R. 1981. Transformation of rat cells by an altered polyoma virus genome expressing only the middle-T protein.Nature (London) 292: 595–600.

    Article  CAS  Google Scholar 

  • Turner, P. C., and Woodland, H. R. 1983. Histone gene number and organization inXenopus; Xenopus borealis has a homogeneous major cluster.Nucleic Acids Res.11: 971–986.

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela, P., Venegas, A., Weinberg, F., Bishop, R., and Rutter, W. J. 1978. Structure of yeast phenylalanine-tRNA genes: An intervening DNA sequence within the region coding for the tRNA.Proc. Natl. Acad. Sci. USA 75: 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Omman, G. J. B., Amberg, A. C., Bass, F., Brocas, H., Sterk, A., Tegelaers, W. H. H., Vassart, G., and de Vijlder, J. J. M. 1983. The human thyroglobulin gene contains two 15–17 kb introns near its 3’-end.Nucleic Acids Res.11: 2273–2285.

    Article  Google Scholar 

  • Venegas, A., Quiroga, M., Zaldivar, J., Rutter, W. J., and Valenzuela, P. 1979. Isolation of yeast tRNALeu genes. DNA sequence of a cloned tRNA’° gene.J. Biol. Chem. 254: 12306–12309.

    PubMed  CAS  Google Scholar 

  • Wallis, J. W., Hereford, L., and Grunstein, M. 1980. Histone H2B genes of yeast encode two different proteins.Cell 22: 799–805.

    Article  PubMed  CAS  Google Scholar 

  • Walter, P., and Blobel, G. 1983. Dissassembly and reconstitution of signal recognition particle.Cell 34: 525–533.

    Article  PubMed  CAS  Google Scholar 

  • Weber, F., Villiers, J., and Schaffner, W. 1984. An SV40 “enhancer trap” incorporates exogenous enhancers or generates enhancers from its own sequences.Cell 36: 983–992.

    Article  PubMed  CAS  Google Scholar 

  • Wong, H. C., Schnepf, H. E., and Whiteley, H. R. 1983. Transcriptional and translational start sites for theBacillus thuringiensis crystal protein gene.J. Biol. Chem. 258: 1960–1967.

    PubMed  CAS  Google Scholar 

  • Woudt, L. P., Pastink, A., Kempers-Veenstra A. E., Jansen, A. E. M., Mager, W. H., and Planta, R. J. 1983. The genes coding for histones H3 and H4 inNeurospora crassa are unique and contain intervening sequences.Nucleic Acids Res.11: 5347–5360.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, Y., Mudryj, M., Sullivan, M., and deCrombrugghe, B. 1983. Isolation and characterization of a genomic clone encoding chick al type III collagen.J. Biol. Chem. 258: 2758–2761.

    PubMed  CAS  Google Scholar 

  • Yanofski, C. 1981. Attenuation in the control of expression of bacterial operons.Nature (London) 289: 751–758.

    Article  Google Scholar 

  • Young, R. A. 1979. Transcription termination in theEscherichia coli ribosomal RNA operonrrnC. J. Biol. Chem.254: 12725–12731.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dillon, L.S. (1987). Major Features of the Gene. In: The Gene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2007-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2007-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2009-6

  • Online ISBN: 978-1-4899-2007-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics