
19© Kedar Iyer and Chris Dannen 2018
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,
https://doi.org/10.1007/978-1-4842-3492-1_2

CHAPTER 2

The Ethereum
Development
Environment
This chapter walks you through the setup and installation of tools required

to run the Ethereum blockchain. We cover hardware requirements,

operating system requirements, and software requirements. After covering

the installation of the software, we provide the basic commands required

to interact with the Ethereum network.

 Getting Set Up
Coders who have set up a development environment for a compiled

language in the past will find the setup for Solidity to be a similar process.

Setting up Solidity and the associated tools requires some knowledge of

the command line and a UNIX-derived operating system. For first-time

developers or those with no command-line experience, we recommend

going through the Learn Enough Command Line to Be Dangerous online

tutorial (www.learnenough.com/command-line-tutorial) before tackling

Solidity.

https://doi.org/10.1007/978-1-4842-3492-1_2
http://www.learnenough.com/command-line-tutorial

20

 Hardware Choices
The primary hardware requirements for any blockchain development, not

just Ethereum, are a reliable Internet connection and large hard drive.

Syncing a copy of the blockchain with a good Internet connection

can take up to 8 hours, though this operation has to be completed only

once. Just for the one-time sync, it is recommended to find a minimum

5Mbps download connection to connect to for a night. Syncing on a

slower connection, while possible, will simply take longer. Broadcasting

transactions, communicating with peers, and downloading new block

information all require an always-on, but not necessarily high-bandwidth

Internet connection. A connection of 1Mbps download and 512kbps

upload should be sufficient for day-to-day operation.

The Ethereum blockchain is large and continually expanding. Running

a full archive node, as of December 2017, takes 350GB of disk space.1

Thankfully, we can run a full node with just the latest snapshot of the

state tree, which as of December 2017 occupies only 35GB of disk space.

Maintaining the state tree snapshot after syncing requires the equivalent

of syncing an archive node from the current block forward. Ideally, you

would have 400GB available, but 75GB is the bare minimum you would

need available to run a full node.

In addition to the hard disk size, your hard disk must be a solid-state

drive (SSD). Using a traditional seeking disk drive (HDD) will be too slow.

Any computer manufactured since 2010 will have sufficient compute

power and RAM, so those should not be an issue.

1 “Ethereum Database Size”, http://bc.daniel.net.nz/

Chapter 2 the ethereum Development environment

http://bc.daniel.net.nz/

21

 Operating System
All the terminal (command-line) commands in this book are geared

toward users on UNIX-derived operating systems. In modern speak, that

means if you are running Mac or Linux, you should be fine. Windows

users will not find this book difficult to follow, as most of the commands

and code are the same across all systems, but should you choose to use

Windows, you will be on your own for the installations in the remainder of

this section.

Tip to make following along with the book easier, Windows
users can install Gnu on Windows, a series of uniX shell utilities
ported over to Windows. the installer can be downloaded from
https://github.com/bmatzelle/gow/wiki.

 Linux

All variants of Linux (Ubuntu, Debian, Red Hat, Arch Linux) already

have the necessary tools required to run an Ethereum client. We will be

spending a lot of time operating in the command-line interface (CLI). All

Linux systems have a built-in CLI program with a name like Terminal,

Bash, or Shell. Some variants of Linux are CLI-only. Most aren’t. In many

Linux systems, the shortcut to access the terminal is Ctrl+Alt+T.

In this book, installation instructions for the required CLI programs are

included for both the apt and yum package managers. Package managers

make it easy to install other programs and dependencies from the

command line. Most Linux distributions come with either apt or yum built

in. If you are not sure about which one you have, type both commands

into your CLI and see which one works. Figure 2-1 shows the output of the

built-in apt manager on Ubuntu.

Chapter 2 the ethereum Development environment

https://github.com/bmatzelle/gow/wiki
https://github.com/bmatzelle/gow/wiki

22

If you are a Windows user and would like to try Linux for this book,

your first hurdle is getting a Linux distribution installed on your computer.

Many detailed tutorials on the Internet indicate how to do so, so we don’t

cover that here. If you choose to go this route, we recommend using

Ubuntu 16.04 LTS with VirtualBox. Ubuntu is the most beginner-friendly

version of Linux, and VirtualBox allows you to run a virtual version of

Linux without the pain and hassle of partitioning your hard drive and

setting up a dual boot.

 macOS

Under the hood, macOS and Linux are similar operating systems. Both are

descended from UNIX, an operating system developed by Bell Labs in the

1970s. The built-in CLI program in macOS is called Terminal, and it has

many of the same commands as its Linux counterpart.

Figure 2-1. An Ubuntu CLI with apt installed

Chapter 2 the ethereum Development environment

23

Note mac, or macintosh, is the name of the computer produced
by apple, and macoS is the operating system that runs on a mac.
Because the two are always sold together, their names are often used
interchangeably.

For our purposes, the key difference between the two CLI

environments is the lack of a package manager for macOS. Let’s fix that by

installing Homebrew. Open the Terminal (you should be able to open it

from the Spotlight search pop-up, which can be opened with the shortcut

Command+spacebar) and copy in the following command and then press

Enter to run the installation:

/usr/bin/ruby -e "$(curl -fsSL https://raw.\

githubusercontent.com/Homebrew/install/master/install)"

When the installation is complete, type brew into Terminal. You should

see a list of available commands.

 Programmer’s Toolkit
A few basic programming tools are required for any programming project:

text editor, compiler/runtime, version control. Let’s get these installed

before we dive into Ethereum clients.

 Text Editor

A text editor is a tool for editing plain text. Plain text is a format enabling

every letter or symbol to be encoded directly into binary. Code and CLIs

operate in plain text because it is the simplest compromise between

humans who like pretty things and computers that want everything as 0s

and 1s. Most word processors do not actually edit plain text. Microsoft Word

uses a proprietary format to allow for advanced styling and formatting and

because Microsoft likes making it difficult for users to leave its platform.

Chapter 2 the ethereum Development environment

24

Any standard text editor will be good enough for Solidity development.

For those who haven’t used a text editor before, Sublime Text or Atom

will be a good start. For the Java-heads and mobile developers used to an

integrated development environment (IDE), there is an IDE for Ethereum

development called Remix, but it has limited functionality and most

developers don’t use it.

 Version Control: git

Version control is an essential tool used to back up code, efficiently

track changes in a codebase, and enable clean collaboration between

multiple developers. Git is the most popular version control system (VCS).

Originally developed by Linus Torvalds to manage the Linux kernel source

code, git is now used by the vast majority of software projects.

Note We will be using git to connect with this book’s official Github
repository at https://github.com/k26dr/ethereum-games.
the official Github repo contains all the project code and links for
this book, and will be updated regularly as the ethereum ecosystem
evolves.

Follow Listing 2-1 to install git.

Listing 2-1. Installing git

// macOS

brew install git

// Linux

sudo apt-get install git

Chapter 2 the ethereum Development environment

https://github.com/k26dr/ethereum-games

25

 Runtime: JavaScript

The official client library for interacting with an Ethereum node via RPC is

web3.js. To use it, we need to install Node.js and NPM. Imagine you dug

through the Chrome browser source code, pulled out just the JavaScript

engine, and turned it into a command-line program. That’s how Ryan

Dahl created Node.js, JavaScript’s server-side sister. Node.js uses a module

system to organize code, similar to Java or Python or Swift. NPM, Node.js

Package Manager, was created to streamline this process and make sharing

modules via the Web easy. Think of it as apt or yum for Node.js modules.

To install, follow Listing 2-2.

Listing 2-2. Installing Node.js and NPM

// macOS

brew install node

// Linux w/ apt

// The second line creates a shortcut from the node command

// to the nodejs program for consistency with the macOS

// package name

sudo apt-get install nodejs npm

sudo ln -s /usr/bin/nodejs /usr/bin/node

 Compiler: Solidity

Solidity is a compiled language that compiles into EVM bytecode similar to

Java. The Solidity compiler will be the first NPM package we install. Install

it globally with the following:

sudo npm install -g solc

Chapter 2 the ethereum Development environment

26

 Ethereum Clients
The Ethereum client is the program that implements the Ethereum

protocol and interacts with the Ethereum network and blockchain. Here

are some of its responsibilities:

• Sync new chains

• Download and verify new blocks

• Connect to peers

• Verify and execute transactions

• Broadcast local transactions to the network

• Provide basic mining ability

There are multiple Ethereum clients, each with its own pros and cons.

We will be using two in this book, geth and TestRPC, but cover two more,

Eth and Parity, so you can be familiar with them.

 Geth

Geth is the official Go implementation of the Ethereum protocol. It is the

most up-to-date Ethereum client and serves as the reference client for all

Ethereum updates. As the official reference implementation for Ethereum,

geth has all the latest security patches and updates. To install geth, follow

Listing 2-3.

Listing 2-3. Installing geth

This is a comment

Any lines starting with '#' will be ignored by the CLI

For Linux w/ apt

sudo apt-get install software-properties-common

Chapter 2 the ethereum Development environment

27

sudo add-apt-repository -y ppa:ethereum/ethereum

sudo apt-get update

sudo apt-get install ethereum

For Mac

brew tap ethereum/ethereum

brew install ethereum

 TestRPC

TestRPC is a lightweight Ethereum client that specializes in running private

chains for development. We will use it to create private networks that are

sandboxed from the mainnet. It is built into the Truffle framework, and we

cover it along with Truffle later in this chapter.

 Eth

Eth is the official C++ implementation of the Ethereum protocol. It is used

in applications such as mining that require high performance. It used to

support the mining algorithm itself, but that portion of the codebase has

since been spun off into its own project called Ethminer.

 Parity

Parity is a third-party Ethereum client that aims to provide a user-friendly

alternative to the geth client and Mist browser. Its development is led by

Gavin Wood, an Ethereum cofounder and a prominent member of the

community. Parity is targeted at Ethereum users rather than developers

and tends to lag geth in having the latest features.

Chapter 2 the ethereum Development environment

28

 Deployment
Ethereum has two types of addresses: wallet addresses and contract

addresses. They look and act the same, but one belongs to a user, and one

belongs to a contract. Only the owner of the private key can send the ether

belonging to a wallet address. A contract address can have a balance, just

like a wallet address. Only the contract code can send the ether belonging

to the contract.

Creating a contract is simple in theory; send the contract bytecode to

the null address (0x). In practice, though, going from a Solidity contract to

EVM bytecode with a hand-rolled process is a messy affair, so we’re going

to pull in one more dependency to simplify the process.

 Introducing Truffle

Truffle is a development framework for Solidity and the EVM. Truffle will

take care of compiling, deploying, and testing our contracts and allow us

to focus on writing the game contracts. To install Truffle globally, use this

command:

sudo npm install -g truffle

Let’s get a feel for Truffle by running some basic commands.

We will go more into the theory of how all this works later. For now, we’re

going to deploy our first contract to a private chain. Run the commands

in Listing 2-4 in the order provided. The truffle develop command

will open a Truffle development console running TestRPC. The migrate

command should be run in that console.

Tip Windows users should use truffle.cmd instead of truffle
for truffle commands. as an example, truffle.cmd develop
would open the truffle dev console.

Chapter 2 the ethereum Development environment

29

Listing 2-4. Deploying a sample dapp with Truffle

mkdir truffle-test

cd truffle-test

truffle init

truffle develop

Run this command in the Truffle dev console

migrate

Exit the dev console

.exit

truffle init scaffolds a series of folders and sample files, one of

which is the contracts folder. You should see a Solidity contract file in

there: Migrations.sol. Take a quick browse through the code in the file.

That is the code we just deployed, and reading through it will give you a

feel for how Solidity contracts are structured.

Migrating is the Truffle equivalent of deploying. A migration in Truffle

is essentially a deployment script. One of the directories scaffolded by

Truffle is the migrations/ folder. There should be a sample migration file

in there as well. Take a look at it to see what a simple migration looks like.

Congratulations! You’ve set up a development chain for yourself and

deployed your first Solidity contract.

 Basic Geth Commands
Geth is an in-depth program that handles a large deal of functionality.

Run geth help to see a full list of commands available in geth. It is quite

comprehensive. We’re going to focus on a small subset of essential

commands in this section.

Chapter 2 the ethereum Development environment

30

The first command we’re going to try out is no command. Run geth

with no options or commands. You should see something similar to

Figure 2-2. Geth is starting up for the first time, connecting to peers, and

beginning the sync process. Use Ctrl+C to exit geth.

To interact with geth, we need to open geth in console mode. Let’s

do so with the command geth console. You should see something like

Figure 2-3 pop up.

Figure 2-2. Geth on startup

Figure 2-3. Geth console

The geth console exposes a series of modules that allow us to interact

with geth. This includes functionality for creating wallets, sending ether,

creating contracts, interacting with contracts, and more. As an example,

to view a list of our wallets, we could input eth.accounts into the console.

Chapter 2 the ethereum Development environment

31

We don’t have any wallets generated at the moment, so we receive back an

empty array. We will be generating wallets and obtaining ether in

Project 3-1, and we will revisit the geth console and its many commands at

that time. Type exit in the console to quit the program.

Many users find the log messages flowing across the geth console to

be distracting. To silence the log messages, run the console in silent mode

with geth --verbosity 0 console.

In addition to the mainnet, geth can be used to access testnets,

run private nets, and interact with any other network that observes the

Ethereum protocol. We will regularly be connecting to the Rinkeby testnet

in this book to test and deploy contracts without having to use any of our

precious ether. To connect to the Rinkeby testnet, run geth --rinkeby.

This will connect to Rinkeby peers and begin the sync process for the

Rinkeby network.

Account and wallet management is one of the core features of geth,

especially for nondevelopers. To access the account management

interface, run geth account. This will pull up a help page and list of

subcommands that can be used for account management. Let’s test one

of the commands right now by running geth account list. Just as in the

console section, you will receive an empty response. The command geth

account new can be used to create a new account, but we will hold off on

doing so until later in the chapter.

To communicate with dapps and external clients, geth can run

a JSON-RPC server. To run geth in RPC mode, use geth --rpc. For

security reasons, RPC mode by default disables access to local private

keys. We will be needing RPC access to our private keys to sign and send

transactions, so we will run the RPC server with geth --rpc --rpcapi

web3,eth,net,personal. The personal module enables access to account

services.

Chapter 2 the ethereum Development environment

32

Caution enabling the personal rpC api exposes your geth wallets
to the internet. the only thing preventing others from stealing your
ether will be your wallet password. make sure it is strong. We will be
repeating this warning multiple times throughout the book.

Sometimes we will want to run two networks at the same time. Later

in the chapter, we will be doing this to sync both the mainnet and Rinkeby

testnet at the same time. By default, geth connects to port 30303 for

network actions and 8545 for the RPC server. Only one program can be

listening on a port at a time, so attempting to run two instances of geth at

the same time will fail by default. To have one of the instances listen on

a different network port (say, 31303), run geth --port 31303. To have

one of the RPC servers run on a different port (say, 9545), run geth --rpc

--rpcport 9545.

 Docs and Resources

The geth docs can be found on GitHub at https://github.com/ethereum/

go-ethereum/wiki/geth The page has links to both the geth console API

and geth command reference.

Table 2-1 is a reference for useful geth commands. Some are covered

in this chapter, and others are not covered until later chapters but are

included here for completeness.

Chapter 2 the ethereum Development environment

https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/ethereum/go-ethereum/wiki/geth

33

 Connecting to the Blockchain
To execute contract deployments and network transactions, you have to

sync a full node for each network you wish to use. We will be syncing two

networks for this book: the Ethereum main network (mainnet) and the

Rinkeby test network (testnet). A test network is a network that runs the

Ethereum protocol, but whose token has no value. It’s useful for testing

code, deployments, and transactions without paying gas fees, which can be

prohibitively expensive for repetitive testing.

Table 2-1. Useful Geth Commands

Description Command

Default geth mode, used for basic

operation

geth

interactive console (silent mode) geth console --verbosity 0

Command reference geth help

rinkeby testnet geth --rinkeby

account management geth account

Create account geth account new

Sync mainnet geth --fast --cache=1024

Sync rinkeby geth --rinkeby --fast --cache=1024

rpC mode geth --rpc

rpC mode with local wallet access geth --rpc --rpcapi

web3,eth,net,personal

listen on custom network port geth --port <port>

listen on custom rpC port geth --rpc --rpcport <port>

Chapter 2 the ethereum Development environment

34

Every public Ethereum network has a unique network ID. The network

ID of the Ethereum mainnet is 1. The network ID of the Rinkeby testnet

is 4. The network ID of our private chains will be large, random numbers

whose only job is to be unique enough to avoid syncing with other

networks.

 Network Synchronization
Geth offers three modes for network synchronization: light, full, and

archive.

A light node syncs block headers, but does not process transactions

or maintain a state tree. Light clients are useful for users who wish only to

maintain wallets and send/receive ether. For developers, a light client will

be insufficient; we will require a full node.

A full node maintains a local snapshot of the blockchain state tree,

downloads full blocks, executes block transactions on its local copy of the

blockchain, and participates in the consensus process. Full nodes are the

backbone of the Ethereum network. For those of you familiar with torrents,

think of the full vs. light client dynamic as analogous to seeds vs. leeches.

Full nodes seed network information to peers, whereas light nodes leech

information from the network without seeding anything back. Syncing a

full node is a slow process that takes about 8 hours and consumes about

30GB of disk space.

An archive node, sometimes referred to as a full archive node,

maintains not only a current snapshot of the state tree, but also a copy

of every state transition that has occurred on the chain since the genesis

block. A full archive node is the granddaddy of Ethereum nodes, and as of

December 2017, consumes 350GB of space while growing at a rate of 30GB

per month. If syncing a full node is a slow process, syncing an archive node

is damn near impossible. Estimates on my laptop with a standard SSD and

10Mbps Internet connection placed the sync time at 45 days. For those

Chapter 2 the ethereum Development environment

35

wishing to run an archive node, your best bet is to use geth’s import/export

functionality to make a copy of the database from an existing archive node.

We will be syncing full nodes for the mainnet and Rinkeby testnet.

 Mainnet

To sync a full node on the mainnet, run the following:

geth --fast --cache=1024

A fast sync will sync a full node without archives. This process takes

about 8 hours on a 10Mbps or faster Internet connection with an SSD

drive. Using an HDD takes two to three times longer. The same goes for

connections below 3Mpbs. Leave the sync running overnight if you can,

and you should be ready in the morning. To save time, you can sync both

the mainnet and the testnet at the same time. We explain how to do so in

the next section.

 Testnet

For the testnet, we will be syncing to the Rinkeby testnet. Past testnets

for Ethereum include Olympic, Morden, Ropsten, and Kovan. The Kovan

testnet is still active but has been mostly supplanted by the Rinkeby

testnet. The other testnets have all been abandoned. Maintaining a testnet

turns out to be quite a difficult task, and they get successfully attacked

quite regularly. More on this can be found in the “Testnet Attacks and

Issues” section in Chapter 6.

We assume that most of you will be syncing the testnet at the same

time as the mainnet, so we will run the testnet sync on a different port:

geth --rinkeby --port 31303

Leave both networks to sync overnight, and resume the exercises in

this book when the syncs are complete.

Chapter 2 the ethereum Development environment

https://doi.org/10.1007/978-1-4842-3492-1_6

36

 Faucets
Mainnet Ether can be purchased on an exchange with bitcoin or fiat

currency, but no exchange will list testnet ether because it has no value.

To solve this problem, most testnets use faucets. Faucets are sites that send

you free crypto. They originated in the early bitcoin days as a quick way for

users to obtain small amounts of bitcoin to get a feel for the technology,

but faded away after the coin gained serious value. Nowadays they are

used seriously only for testnets.

 Summary
Running an Ethereum node requires a large solid-state hard drive

and a good Internet connection. 75GB of SSD disk space and a 5Mpbs

connection are an ideal minimum.

The best operating system for developing Ethereum smart contracts is

Linux, with macOS a close second. If you must use Windows, make sure to

download GNU on Windows and use truffle.cmd instead of truffle for

your Truffle commands.

An Ethereum client takes care of syncing and maintaining a local

copy of the blockchain. It allows us to broadcast transactions and interact

with deployed contracts. The two main clients we will use are geth and

TestRPC. TestRPC provides a local dev chain, and geth allows us to connect

to the mainnet and Rinkeby testnet. In the next chapter, we will use the

tools and concepts from this chapter to broadcast a simple transaction and

deploy our first contract.

Chapter 2 the ethereum Development environment

	Chapter 2: The Ethereum Development Environment
	Getting Set Up
	Hardware Choices
	Operating System
	Linux
	macOS

	Programmer’s Toolkit
	Text Editor
	Version Control: git
	Runtime: JavaScript
	Compiler: Solidity

	Ethereum Clients
	Geth
	TestRPC
	Eth
	Parity

	Deployment
	Introducing Truffle

	Basic Geth Commands
	Docs and Resources

	Connecting to the Blockchain
	Network Synchronization
	Mainnet
	Testnet

	Faucets

	Summary

