Skip to main content

Biochemical and Functional Properties of Purified GABA Receptor/Benzodiazepine Receptor/Chloride Channel Complex and Application of its Antibody for Immunohistochemical Studies

  • Chapter
Neuroreceptors and Signal Transduction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 236))

  • 65 Accesses

Abstract

It has been well documented that the binding of γ-aminobutyric acid (GABA), which is considered as an inhibitory neurotransmitter in the mammalian central nervous system (CNS), to its relevant receptor at GABAergic synapses induces the increased influx of chloride ion and generates inhibitory postsynaptic potential (1,2). Recent neurochemical studies using 36C1 also have indicated that GABA induces the influx of 36C1 across synaptic membrane (3,4). Although these evidences suggest the presence of functional coupling between GABA receptor and chloride ion channel, it has been also proposed that there is an interaction between GABA agonists and benzodiazepines at GABAergic synapses (5,6). In fact, various pharmacological studies have shown that GABA and GABA agonists such as muscimol facilitate the benzodiazepine binding to benzodiazepine receptor (7,8,9,10), which is known as a pharmacologically relevant receptor for benzodiazepines (11,12,13), whereas benzodiazepines stimulate GABA receptor binding (9,10,14,15). Furthermore, biochemical studies have indicated that both GABA and benzodiazepine receptors are cosolubilized from cerebral synaptic membrane fraction by various detergents, and both binding sites appear in the same fraction following various column chromatographies (10,16,17,18). These results strongly suggest that cerebral GABA receptor may be functionally as well as structurally coupled with benzodiazepine receptor and chloride ion channel. In fact, we have reported that the purification of cerebral GABA receptor coupled with benzodiazepine receptor is achieved by the use of benzodiazepine affinity column (19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Krnjević and S. Schwartz, Is y-aminobutyric acid an inhibitory transmitter ? Nature (Lond.) 211: 1372 (1966)

    Article  Google Scholar 

  2. A. Takeuchi and N. Takeuchi, Anion permeability of the inhibitory postsynaptic membrane of the crayfish neuromuscular junction, J. Physiol. 191: 575 (1967)

    Google Scholar 

  3. A.M. Allan and R.A. Harris, y-Aminobutyric acid agonists and antagonists alter chloride flux across brain membranes, Mol. Pharmacol. 29: 497 (1986)

    Google Scholar 

  4. R.A. Harris and A.M. Allan, Functional coupling of y-aminobutyric acid receptors to chloride channels in brain membranes, Science 228: 1108 (1986)

    Google Scholar 

  5. E. Costa, A. Guidotti, C.C. Mao, and A. Suria, New concepts on the mechanism of action of benzodiazepine, Life Sci. 17: 167 (1975)

    Article  Google Scholar 

  6. W. Haefely, A. Kulscar, H. Mahler, L. Pier, P. Polc, and R. Schaffner, Possible involvement of GABA in the central action of benzodiazepines, in: “Mechanism of Action of Benzodiazepine,” E. Costa and P. Greengard, ed., Raven Press, New York, p. 131 (1975)

    Google Scholar 

  7. J.F. Tallman, J.W. Thomas, and D.W. Gallager, GABAergic modulation of benzodiazepine binding site sensitivity, Nature (tond.) 274: 383 (1978)

    Google Scholar 

  8. M. Karobath and G. Sperk, Stimulation of benzodiazepine receptor binding by y-aminobutyric acid, Proc. Natl. Acad. Sci. U.S.A. 76: 1004 (1979)

    Google Scholar 

  9. M. Gavish and S.H. Snyder, Benzodiazepine recognition sites on GABA receptors, Nature (tond.) 287: 651 (1980)

    Google Scholar 

  10. Y. Ito and K. Kuriyama, Some properties of solubilized GABA receptor, Brain Res. 236: 351 (1982)

    Google Scholar 

  11. C.R. Macherer, R.L. Kochman, B.A. Bierschenk, and S.S. Bremner, The binding of [3H]diazepam to rat brain homogenates, J. Pharmacol. Exp. Ther. 206: 405 (1977)

    Google Scholar 

  12. H. Mhler and T. Okada, Benzodiazepine receptor: demonstration in the central nervous system, Science 198: 849 (1977)

    Google Scholar 

  13. R.F. Squires and C. Braestrup, Benzodiazepine receptors in the rat brain, Nature (tond.) 266: 732 (1977)

    Google Scholar 

  14. A. Guidotti, G. Taffano, and E. Costa, An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain, Nature (Lond.) 275: 553 (1978)

    Google Scholar 

  15. J.H. Skerritt and G.A.R. Johnston, Enhancement of GABA binding by benzodiazepines and related anxiolytics, Eur. J. Pharmacol. 89: 193 (1983)

    Google Scholar 

  16. M. Gavish, R.S.L. Chang, and S.H. Snyder, Solubilization of histamine H-1, GABA and benzodiazepine receptors, Life Sci. 25: 783 (1979)

    Article  Google Scholar 

  17. T. Asano and N. Ogasawara, Soluble gamma-aminobutyric acid and benzodiazepine receptors from rat cerebral cortex, Life Sci. 29: 193 (1981)

    Google Scholar 

  18. F.A. Stephenson and R.W. Olsen, Solubilization by CHAPS detergents of barbiturates-enhanced benzodiazepine-GABA receptor complex, J. Neurochem. 39: 1579 (1982)

    Article  Google Scholar 

  19. J. Taguchi and K. Kuriyama, Purification of y-aminobutyric acid (GABA) receptor from rat brain by affinity column chromatography using a new benzodiazepine, 1012-S, as an immobilized ligand, Brain Res. 323, 219 (1984)

    Google Scholar 

  20. D.R. Hill and N.G. Bowery, 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain, Nature (Lond.) 290: 149 (1981)

    Google Scholar 

  21. N.G. Bowery, D.R. Hill, and A.L. Hudson, Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes, Br. J. Pharmacol. 78: 191 (1983)

    Google Scholar 

  22. D.R. Hill, N.G. Bowery, and A.L. Hudson, Inhibition of GABAB receptor binding by guanyl nucleotides, J. Neurochem. 42: 652 (1984)

    Article  Google Scholar 

  23. W.J. Wojcik and N.H. Neff, y-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells, Mol. Pharmacol. 25: 24 (1984)

    Google Scholar 

  24. E.W. Karbon, R.S. Duman, and S.J. Enna, GABAB receptors and norepinephrine-stimulated cAMP production in rat brain cortex, Brain Res. 306: 327 (1984)

    Google Scholar 

  25. E.W. Karbon and S.J. Enna, Characterization of the relationship between y-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain, Mol. Pharmacol. 27: 53 (1985)

    Google Scholar 

  26. R. Barber and K. Saito, Light microscopic visualization of GAD and GABA-T in immunocytochemical preparations of rodent CNS, in “GABA in Nervous System Function,” E. Roberts, T.N. Chase, and D.B. Tower, ed., Raven Press, New York, p. 113 (1976)

    Google Scholar 

  27. H. Weinstein, E. Roberts, and T. Kakefuda, Studies of subcellular distribution of y-aminobutyric acid and glutamate decarboxylase in mouse brain, Biochem. Pharmacol. 12: 503 (1963)

    Google Scholar 

  28. K. Kuriyama, E. Roberts, and T. Kakefuda, Association of the y-aminobutyric acid system with a synaptic vesicle fraction from mouse brain, Brain Res. 8: 132 (1968)

    Google Scholar 

  29. K. Kuriyama, H. Weinstein, and E. Roberts, Uptake of y-aminobutyric acid by mitochondrial and synaptosomal fractions from mouse brain, Brain Res. 16: 479 (1969)

    Google Scholar 

  30. S.R. Zukin, A.B. Young, and S.H. Snyder, Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system, Proc. Natl. Acad. Sci. U.S.A. 71: 4802 (1974)

    Google Scholar 

  31. T. Obata and H.I. Yamamura, The effect of benzodiazepines and carbolines on GABA-stimulated chloride influx by membrane vesicles from the rat cerebral cortex, Biochem. Biophys. Res. Commun. 141: 1 (1986)

    Google Scholar 

  32. K. Haga, T. Haga, A. Ichiyama, T. Katada, H. Kurose, and M. Ui, Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein, Nature (Lond.) 316: 731 (1985)

    Google Scholar 

  33. K. Kuriyama and J. Taguchi, Purification of y-aminobutyric acid receptor, benzodiazepine receptor and Cl channel from bovine cerebral cortex by benzodiazepine affinity gel column chromatography, Neurochem. Int. 10; 253 (1987)

    Google Scholar 

  34. M. Hirouchi, J. Taguchi, T. Ueha, and K. Kuriyama, GABA-stimulated 36C1- influx into reconstituted vesicles with purified GABAA/benzodiazepine receptor complex, Biochem. Biophys. Res. Commun. 146: 1471 (1987)

    Google Scholar 

  35. J. Taguchi and K. Kuriyama, Functional coupling of y-aminobutyric acid (GABA)A and benzodiazepine type II receptors: analysis using purified GABA/benzodiazepine receptor complex from bovine cerebral cortex, Neuropharmacology 26: 1745 (1987)

    Google Scholar 

  36. K. Kuriyama and J. Taguchi, Glycoprotein as a constituent of purified y-aminobutyric acid/benzodiazepine receptor complex: structures and physiological roles of its carbohydrate chain, J. Neurochem. 48: 1897 (1987)

    Article  Google Scholar 

  37. R.W. Olsen, GABA-benzodiazepine-barbiturate receptor interaction, J. Neurochem. 37: 1 (1981)

    Article  Google Scholar 

  38. W. Scott-Young III, D. Niehoff, M.J. Kuhar, B. Beer, and A.S. Lippa, Multiple benzodiazepine receptor localization by light microscopic radiohistochemistry, J. Pharmacol. Exp. Ther. 216: 425 (1981)

    Google Scholar 

  39. J.R. Unnerstall, M.J. Kuhar, D.L. Niehoff, and J.M Palacios, Benzodiazepine receptors are coupled to subpopulation of y-aminobutyric acid (GABA) receptors: Evidence from a quantitative autoradiographic study, J. Pharmacol. Exp. Ther. 218: 797 (1981)

    Google Scholar 

  40. G.P. Wilkin, A.L. Hudson, D.R. Hill, and N.G. Bowery, Autoradiographic localization of GABAB receptors in rat cerebellum, Nature (Lond.) 294: 584 (1981)

    Article  Google Scholar 

  41. C.A. Klepner, A.S. Lippa, D.J. Benson, M.C. Sano, and B. Beer, Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors, Pharmacol. Biochem. Behay. 11: 457 (1979)

    Google Scholar 

  42. C. Braestrup and M. Nielsen, 3H-Propyl-0-carboline-3-carboxylate as a selective radioligand for the BZ 1 benzodiazepine receptor subclass, J. Neurochem. 37: 333 (1981)

    Article  Google Scholar 

  43. M.L. Porceddu, M.G. Corda, E. Sanna, and G. Biggio, Increase in nigral type II benzodiazepine recognition sites following striatonigral denervation, Eur. J. Pharmacol. 112: 265 (1985)

    Google Scholar 

  44. M.G. Corda, A. Concas, M.L. Porceddu, E. Sanna, and G. Biggio, Striatonigral denervation increases type II benzodiazepine receptors in the substantia nigra of the rat, Neuropharmacology 25: 59 (1986)

    Google Scholar 

  45. J.C. Eccles, M. Ito, and J. Szentagothai, The Cerebellum as a Neuronal Machine, Springer-Verlag, New York (1967)

    Book  Google Scholar 

  46. V. Chan-Palay and S.L. Palay, Tendril and glomerular collaterals of climbing fibers in the granular layer of the rat’s cerebellar cortex, Z. Anat. Entwicklungsgesch. 133: 247 (1971)

    Google Scholar 

  47. B.J. McLaughlin, J.G. Wood, K. Saito, R. Barber, J.E. Vaughn, E. Roberts, and J.Y. Wu, The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76: 377 (1974)

    Google Scholar 

  48. J.T. Coyle and R. Schwarcz, Lesion of striatal neurons with kainic acid provides a model for Huntington’s Chorea, Nature (Lond.) 263: 244 (1976)

    Google Scholar 

  49. E. Kurihara, K. Kuriyama, and Y. Yoneda, Interconnection of GABAergic neurons in rat extrapyramidal tract: analysis using intracerebral microinjection of kainic acid, Exp. Neurol. 68: 12 (1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuriyama, K., Taguchi, Ji. (1988). Biochemical and Functional Properties of Purified GABA Receptor/Benzodiazepine Receptor/Chloride Channel Complex and Application of its Antibody for Immunohistochemical Studies. In: Kito, S., Segawa, T., Kuriyama, K., Tohyama, M., Olsen, R.W. (eds) Neuroreceptors and Signal Transduction. Advances in Experimental Medicine and Biology, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5971-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5971-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5973-0

  • Online ISBN: 978-1-4757-5971-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics