Skip to main content

The Flow Properties of Blood

  • Chapter
Biomechanics

Abstract

Blood is a marvelous fluid that nurtures life, contains many enzymes and hormones, and transports oxygen and carbon dioxide between the lungs and the cells of the tissues. We can leave the study of most of these important functions of blood to hematologists, biochemists, and pathological chemists. For biomechanics the most important information we need is the constitutive equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbee, J. H. and Cokelet, G. R. (1971) The Fahraeus effect. Microvasc. Res. 3, 1–21.

    Article  Google Scholar 

  • Biggs, R. and MacFarlane, R. G. (1966) Human Blood Coagulation and Its Disorders, 3rd edition. Blackwell, Oxford.

    Google Scholar 

  • Blackshear, P. L., Forstrom, R. J., Dorman, F. D., and Voss, G. O. (1971) Effect of flow on cells near walls. Fed. Proc. 30, 1600–1609.

    PubMed  Google Scholar 

  • Brooks, D. E., Goodwin, J. W., and Seaman, G. V. F. (1970) Interactions among erythrocytes under shear. J. Appl. Physiol. 28, 172–177.

    PubMed  CAS  Google Scholar 

  • Bugliarello, G. and Sevilla, J. (1971) Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7, 85–107.

    Google Scholar 

  • Casson, M. (1959) A flow equation for pigment-oil suspensions of the printing ink type. In Rheology of Disperse Systems, C. C. Mills (ed.) Pergamon, Oxford, pp. 84–104.

    Google Scholar 

  • Charm, S. E. and Kurland, G. S. (1974) Blood Flow and Micro Circulation. Wiley, New York.

    Google Scholar 

  • Chien, S. (1970) Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–979.

    Article  PubMed  CAS  Google Scholar 

  • Chien, S. (1972) Present state of blood rheology. In Hemodilution. Theoretical Basis and Clinical Application, K. Messmer and H. Schmid-Schoenbein (eds.) Int. Symp. Rottach-Ergern, 1971, S. Karger, Basel, pp. 1–45.

    Google Scholar 

  • Chien, S., Usami, S., Taylor, M., Lundberg, J. L., and Gregersen, M. I. (1966) Effects of hematocrit and plasma proteins of human blood rheology at low shear rates. J. Appl. Physiol. 21, 81–87

    Google Scholar 

  • Chien, S., Usami, S., and Dellenbeck, R. J. (1967) Blood viscosity: Influence of erythrocyte deformation. Science 157, 827–831.

    Article  PubMed  CAS  Google Scholar 

  • Chien, S., Usami, S., Dellenbeck, R. J., and Gregersen, M. (1970) Shear dependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol. 219, 136–142.

    PubMed  CAS  Google Scholar 

  • Chien, S., Luse, S. A., and Bryant, C. A. (1971) Hemolysis during filtration through micropores: A scanning electron microscopic and hemorheologic correlation. Microvasc. Res. 3, 183–203.

    Article  PubMed  CAS  Google Scholar 

  • Chien, S., Usami, S., and Skalak, R. (1984) Blood flow in small tubes. In E. M. Renkin, and C. C. Michel (eds.) Handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. IV, Part 1. American Physiological Society, Bethesda, MD, pp. 217–249.

    Google Scholar 

  • Cokelet, G. R. (1972) The rheology of human blood. In Biomechanics: Its Foundation and Objectives, Fung, Perrone, and Antiker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 63–103.

    Google Scholar 

  • Cokelet, G. R., Merrill, E. W., Gilliland, E. R., Shin, H., Britten, A., and Wells, R. E. (1963) The rheology of human blood measurement near and at zero shear rate. Trans. Soc. Rheol. 7, 303–317.

    Article  Google Scholar 

  • Dintenfass, L. (1971) Blood Microrheology. Butterworths, London.

    Google Scholar 

  • Dintenfass, L. (1976) Rheology of Blood in Diagnostic and Preventive Medicine. Butter-worths, London.

    Google Scholar 

  • Fung, Y. C. (1965) Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y. C. (1993) A First Course in Continuum Mechanics, 3rd edition. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Goldsmith, H. L. (1971) Deformation of human red cells in tube flow. Biorheology 7, 235–242.

    PubMed  CAS  Google Scholar 

  • Goldsmith, H. L. (1972a) The flow of model particles and blood cells and its relation to thrombogenesis. In Progress in Hemostasis and Thrombosis, Vol. 1, T. H. Spaet (ed.) Grunte & Stratton, New York, pp. 97–139.

    Google Scholar 

  • Goldsmith, H. L. (1972b) The microrheology of human erythrocyte suspensions. In Theoretical and Applied Mechanics Proc. 13th IUTAM Congress, E. Becker and G. K. Mikhailov (eds.) Springer, New York.

    Google Scholar 

  • Goldsmith, H. L. and Marlow, J. (1972) Flow behavior of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc. Roy. Soc. London B 182, 351–384.

    Article  Google Scholar 

  • Gregersen, M. I., Bryant, C. A., Hammerle, W. E., Usami, S., and Chien, S. (1967) Flow characteristics of human erythrocytes throughy polycarbonate sieves. Science 157, 825–827.

    Article  PubMed  CAS  Google Scholar 

  • Hartert, H. and Schaeder, J. A. (1962) The physical and biological constants of thrombelastography. Biorheology 1, 31–40.

    CAS  Google Scholar 

  • Hartert, H. (1975) Clotting layers in the rheo-simulator. Biorheology 12, 249–252.

    PubMed  CAS  Google Scholar 

  • Haynes, R. H., (1962) The viscosity of erythrocyte suspensions. Biophys. J. 2, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Langsjoen, P. H. (1973) The value of reducing blood viscisity in acute myocardial infarction. No. 11. Karger, Basel, pp. 180–184.

    Google Scholar 

  • Larcan, A. and Stoltz, J. F. (1970) Microcirculation et Hemorheologie. Masson, Paris.

    Google Scholar 

  • McIntire, L. V. (ed.) (1985) Guidelines for Blood—Material Interactions. Report of a National Heart, Lung, and Blood Institute Working Group. U. S. Dept. of HHS, PHS, and NIH. NIH Publication No. 85–2185.

    Google Scholar 

  • McMillan, D. E. and Utterback, N. (1980) Maxwell fluid behavior of blood at low shear rate. Biorheology 17, 343–354.

    PubMed  CAS  Google Scholar 

  • McMillan, D. E., Utterback, N. G., and Stocki, J. (1980) Low shear rate blood viscosity in diabetes. Biorheology 17, 355–362.

    PubMed  CAS  Google Scholar 

  • Merrill, E. W., Cokelet, G. C., Britten, A., and Wells, R. E. (1963) Non-Newtonian rheology of human blood effect of fibrinogen deduced by “subtraction.” Circulation Res 13, 48–55.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, E. W., Gilliland, E. R., Cokelet, G. R., Shin, H., Britten, A., and Wells, R. E. (1963) Rheology of human blood, near and at zero flow. Biophys. J. 3, 199–213.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, W. E., Margetts, W. G., Cokelet, G. R., and Gilliland, E. W. (1965) The Casson equation and rheology of blood near zero shear. In Symposium on Biorheology, A Copley (ed.) Interscience Publishers, New York, pp. 135–143.

    Google Scholar 

  • Merrill, E. W., Benis, A. M., Gilliland, E. R. Sherwood, R. K., and Salzman, E. W. (1965) Pressure-flow relations of human blood in hallow fibers at low flow rates. J. Appl. Physiol. 20, 954–967.

    CAS  Google Scholar 

  • Messmer, K. and Schmid-Schoenbein, H. (eds.) (1972) Hemodilation: Theoretical Basis and Clinical Application. Karger, Basel.

    Google Scholar 

  • Oka, S. (1965) Theoretical considerations on the flow of blood through a capillary. In Symposium on Biorheology, A. L. Copley (ed.) Interscience, New York, pp. 89–102.

    Google Scholar 

  • Oka, S. (1974) Rheology—Biorheology. Syokabo, Tokyo (in Japanese).

    Google Scholar 

  • Phibbs, R. H. (1969) Orientation and distribution of erythrocytes in blood flowing through medium-sized arteries. In Hemorheology, A. C. Copley (ed.) Pergamon Press, New York, pp. 617–630.

    Google Scholar 

  • Rand, R. P. and Burton, A. C. (1964) Mechanical properties of the red cell membrane. Biophys. J. 4, 115–136.

    Article  PubMed  CAS  Google Scholar 

  • Rand, P. W., Barker, N., and Lacombe, E. (1970) Effects of plasma viscosity and aggregation on whole blood viscosity. Am. J. Physiol. 218, 681–688.

    PubMed  CAS  Google Scholar 

  • Rowlands, S., Groom, A. C., and Thomas, H. W. (1965) The difference in circulation times between erythrocyte and plasma in vivo. In Symposium on Biorheology, A. Copley, (ed.) Interscience Publishers, New York, pp. 371–379.

    Google Scholar 

  • Scott-Blair, G. W. (1974) An Introduction to Biorheology. Elsevier, New York. Thurston, G. B. (1972) Viscoelasticity of human blood. Biophys. J. 12, 1205–1217.

    Google Scholar 

  • Thurston, G. B. (1973) Frequency and shear rate dependence of viscoelasticity, of human blood. Biorheology 10, 375–381; (1976) 13, 191–199; (1978) 15, 239–249; (1979) 16, 149–162.

    Google Scholar 

  • Thurston, G. B. (1976) The viscosity and viscoelasticity of blood in small diameter tubes. Microvasc. Res. 11, 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Vadas, E. B., Goldsmith, H. L., and Mason, S. G. (1973) The microrheology of colloidal dispersions. I. The microtube technique. J. Colloid Interface Sci. 43, 630–648.

    Article  CAS  Google Scholar 

  • Whitmore, R. L. (1968) Rheology of the Circulation. Pergamon Press, New York.

    Google Scholar 

  • Yen, R. T. and Fung, Y. C. (1973) Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli. J. Appl. Physiol. 35, 510–517.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, YC. (1993). The Flow Properties of Blood. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2257-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2257-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3104-7

  • Online ISBN: 978-1-4757-2257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics