Skip to main content

Abstract

Outline: Section 2 simply describes, without attempt at explanation, what happens electrically when a plasma is in contact with a solid surface. The practical implications of the interaction are briefly described. Section 3 provides a physical explanation of why these effects occur and deduces initial estimates of the plasma-solid voltage difference and the spatial extent of this voltage drop. Section 4 deduces the Bohm Criterion (ion drift velocity out of the plasma must equal the ion acoustic speed) using ion fluid models. The Criterion is obtained from both the plasma and the sheath equations separately. Section 5 deduces simple formulae for the particle and energy flux which is transmitted by a sheath, both for electrically floating and biased objects. Section 6 gives a brief indication of how the sheath particle and energy transmission characteristics influence the modeling of the edge plasma in magnetically confined plasma devices, while Section 7 gives a similar brief introduction to their use in the interpretation of plasma probe data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.F. Chen “Introduction to Plasma Physics and Controlled Fusion, Vol I. Plasma Physics”, Second Edition, Plenum Press, New York, p. 228 (1983).

    Google Scholar 

  2. Ref. 1, pg. 54

    Google Scholar 

  3. E.H. Holt and R.E. Haskell “Foundations of Plasma Dynamics”, MacMillan, New York, p. 134 (1965).

    Google Scholar 

  4. S.A. Self, Phys. Fluids 6, 1762 (1963).

    Article  ADS  MATH  Google Scholar 

  5. J.G. Andrews and R.H. Varey, J. Phys. A 3, 413 (1970).

    Article  ADS  Google Scholar 

  6. A.T. Mense and G.A. Emmert, Nucl. Fusion 19, 361 (1979).

    Article  ADS  Google Scholar 

  7. Ref. 1, p. 293.

    Google Scholar 

  8. Ref. 1, p. 9; Ref. 3, p. 59.

    Google Scholar 

  9. Ref. 1, p. 294.

    Google Scholar 

  10. Ref. 1, p. 10; Ref. 3, p. 248.

    Google Scholar 

  11. D. Böhm, “The Characteristics of Electrical Discharges in Magnetic Fields” Eds A. Guthrie and R.K. Wakerling, McGraw Hill, New York, Chapt. 3 (1949).

    Google Scholar 

  12. Ref. 1, Chapt. 3; Ref. 3, Chapt. 6.

    Google Scholar 

  13. A. von Engel, “Ionized Gases”, Oxford university Press (1965).

    Google Scholar 

  14. K. Uehara, Y. Gomay, T. Yamamoto, N. Suzuki, M. Maeno, T. Hirayama, M. Shimada, S. Konoshima, N. Fujisawa, Plasma Phys. 21, 89 (1979).

    Article  ADS  Google Scholar 

  15. G. Haas, M. Keilhacker, and K. Lackner, J. Nucl. Mater. 76 & 77, 279 (1978).

    Article  Google Scholar 

  16. M.R. Gordinier and R.W. Conn, J. Nucl. Mater. 93 & 94, 420 (1980).

    Article  Google Scholar 

  17. G. Fuchs and A. Nicolai, Nucl. Fusion 20, 1247 (1980).

    Article  ADS  Google Scholar 

  18. J.M. Ogden, CE. Singer, D.E. Post, R.V. Jensen, F.G.P. Seidl, IEEE Trans, on Plasma Science PS9, 274 (1981).

    Google Scholar 

  19. P.J. Harbour and J.G. Morgan, “Models and Codes for the Plasma Edge Region”, Culham Laboratory Report CLM-R234 (1982).

    Google Scholar 

  20. M.F.A. Harrison, P.J. Harbour, and E.S. Hotston, Nucl. Technol./Fusion 3, 432 (1983).

    Google Scholar 

  21. P.C. Stangeby, J. Nucl. Mater. 121, 55 (1984).

    Article  ADS  Google Scholar 

  22. P.C. Stangeby, Phys. Fluids 28, 644 (1985).

    Article  ADS  Google Scholar 

  23. W.M. Stacey, “Fusion Plasma Analysis”, Wiley, New York, p. 78 (1981).

    Google Scholar 

  24. Ref. 1, p. 96.

    Google Scholar 

  25. P.C. Stangeby and J.E. Allen, J. Phys. A. 3, 304 (1970).

    Article  ADS  MATH  Google Scholar 

  26. L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).

    Article  ADS  Google Scholar 

  27. J.E. Allen and P.C. Thonemann, Proc. Phys. Soc. B67, 768 (1954).

    ADS  Google Scholar 

  28. L. C. Woods, J. Fluid Mech. 23, 315 (1965).

    Article  ADS  Google Scholar 

  29. E.R. Harrison and W.B. Thompson, Proc. Phys. Soc. 72, 2145 (1959).

    Google Scholar 

  30. J.E. Allen, J. Phys. D. 9, 2331 (1976).

    Article  ADS  Google Scholar 

  31. P.C. Stangeby, Phys. Fluids 27, 2699 (1984).

    Article  ADS  Google Scholar 

  32. E.R. Harrison, “Mean Kinetic Energy of Ions in Low Pressure Plane Symmetric Plasmas”, AERE GP/M 203, Harwell, U.K. (1957).

    Google Scholar 

  33. P.C. Stangeby, Phys. Fluids 27, 682 (1984).

    Article  ADS  MATH  Google Scholar 

  34. G.D. Hobbs and J.A. Wesson, “Heat Transmission through a Langmuir Sheath in the Presence of Electron Emission”, Culham Laboratory Report CLM-R61 (1966);

    Google Scholar 

  35. G.D. Hobbs and J.A. Wesson, “Heat Transmission through a Langmuir Sheath in the Presence of Electron Emission”, Plasma Phys. 9, 85 (1967).

    Article  ADS  Google Scholar 

  36. R. Chodura, K. Lackner, J. Neuhauser, W. Schneider, R. Wunderlich, in Proc. 9th International Conference on Plasma Physics and Controlled Nuclear Fusion Research (1982), (IAEA, Vienna, 1983) Vol. I, 313.

    Google Scholar 

  37. M.A. Mahdavi et al., J. Nucl. Mater. 111 & 112, 355 (1982).

    Article  Google Scholar 

  38. M. Petravic, D. Post, D. Heifetz, and J. Schmidt, Phys. Rev. Lett. 48, 326 (1982).

    Article  ADS  Google Scholar 

  39. H. Kimura et al., Nucl. Fusion 18, 1195 (1978).

    Article  ADS  Google Scholar 

  40. P.C. Stangeby, J. Phys. D. 15, 1007 (1982)

    Article  ADS  Google Scholar 

  41. 39a. P.C. Stangeby, J. Nucl. Mater. 111 & 112, 84 (1982).

    Article  Google Scholar 

  42. D. Bohm, E.H.S. Burhop, and H.S.W. Massey, in “Characteristics of Electric Discharges in Magnetic Fields”, Eds, A. Guthrie and R.K. Wakerling, McGraw-Hill, New York, Chapter 2 (1949).

    Google Scholar 

  43. U. Daybelge and B. Be in, Phys. Fluids 24, 1190 (1981).

    Article  ADS  MATH  Google Scholar 

  44. R. Chodura, Phys. Fluids 25, 1628 (1982).

    Article  ADS  MATH  Google Scholar 

  45. R. Chodura, J. Nucl. Mater. 111 & 112, 420 (1982).

    Article  Google Scholar 

  46. J.P. Biersack and L.G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980).

    Article  ADS  Google Scholar 

  47. D.M. Manos, R.V. Budny, and S.A. Cohen, J. Vac. Sci. Technol. A1, 845 (1983) (data available from the authors).

    ADS  Google Scholar 

  48. W. Eckstein and H. Verbeek, IPP Garching Report IPP9/32 (1979).

    Google Scholar 

  49. C.F. Barnett, J.A. Ray, E. Ricci, M.I. Wilker, E.W. McDaniel, E.W. Thomas, H.B. Gilbody, “Atomic Data for Controlled Fusion Research”, Oak Ridge National Laboratory Report ORNL-5207, Oak Ridge, TN (1977), Vol. II, Section D.

    Google Scholar 

  50. P. Staib, J. Nucl. Mater. 111 & 112, 109 (1982).

    Article  Google Scholar 

  51. D.M. Manos, R. Budny, T. Satake, and S.A. Cohen, J. Nucl. Mater. 111 & 112, 123 (1982).

    Google Scholar 

  52. G. Proudfoot and P.J. Harbour, J. Nucl. Mater. 111 & 112, 87 (1982).

    Article  Google Scholar 

  53. P.C. Stangeby, G.M. McCracken, and J.E. Vince, J. Nucl. Mater. 111 & 112, 81 (1982).

    Article  Google Scholar 

  54. H. Vernickel, N. Nucl. Mater. 111 & 112, 531 (1982).

    Article  Google Scholar 

  55. G.M. McCracken and P.E. Stott, Nucl. Fusion 19, 889 (1979).

    Article  ADS  Google Scholar 

  56. Ref. 13, p. 243

    Google Scholar 

  57. W. Schneider, D. Heifetz, K. Lackner, J. Neuhauser, D. Post, and K.G. Raub, J. Nucl. Mater. 121, 178 (1984).

    Article  ADS  Google Scholar 

  58. P.C. Stangeby, G.M. McCracken, S.K. Erents, J.E. Vince, and R. Wilden, J. Vac. Sci. Technol. A1, 1302 (1983).

    ADS  Google Scholar 

  59. R.K. Janev, D.E.. Post, W.D. Langer, K. Evans, D.B. Heifetz, and J.C. Weisheit, J. Nucl. Mater. 121, 10 (1984).

    Article  ADS  Google Scholar 

  60. D.R. Baker, R.T. Snider, and M. Nagami, Nucl. Fusion 22, 807 (1982).

    Article  Google Scholar 

  61. Y. Shimomura, M. Keilhacker, K. Lackner, and H. Murmann, Nucl. Fusion 23, 869 (1983).

    Article  Google Scholar 

  62. Ref. 13, Chapters 8 and 9.

    Google Scholar 

  63. E.A. Robson and P.C. Thonemann, Proc. Phys. Soc. 73, 508 (1959).

    Article  ADS  Google Scholar 

  64. E. Hantzsche, Beitr. aus der Plasmaphysik 24, 329 (1980).

    Article  ADS  Google Scholar 

  65. S.A. Cohen, J. Nucl. Mater. 76 & 77, 68 (1978).

    Article  Google Scholar 

  66. P.C. Stangeby, G.M. McCracken, S.K. Erents, and G. Mathews, J. Vac. Sci. Technol. A2; 702 (1984).

    ADS  Google Scholar 

  67. F.F. Chen, in “Plasma Diagnostic Techniques,” Eds. R.H. Huddlestone, and S.L. Leonard, Academic Press, New York, Chapt. 3 (1965).

    Google Scholar 

  68. J.D. Swift and M.J.R. Schwar, “Electric Probes for Plasma Diagnostics”, Iliffe Books, New York (1969).

    Google Scholar 

  69. J.G. Laframboise, UTIAS Report No. 100, Institute for Aerospace Studies, University of Toronto (1966).

    Google Scholar 

  70. S.K. Erents, G.M. McCracken, and J. Vince, J. Phys. D. 11, 227 (1978).

    Article  ADS  Google Scholar 

  71. G. Staudenmaier, J. Roth, R. Behrisch, J. Bohdansky, W. Eckstein, P. Staib, S. Matteson, S.K. Erents, J. Nucl. Mater. 84, 149 (1979).

    Article  ADS  Google Scholar 

  72. W.R. Wampler, Appl. Phys. Lett. 41, 335 (1982).

    Article  ADS  Google Scholar 

  73. W.R. Wampler and D.M. Manos, J. Vac. Sci. Technol. A1, 827 (1983).

    ADS  Google Scholar 

  74. S.K. Erents and P.C. Stangeby, J. Nucl. Mater. 111 & 112, 165 (1982).

    Article  Google Scholar 

  75. P. Staib, J. Nucl. Mater. 93 & 94, 351 (1980).

    Article  Google Scholar 

  76. G. Mathews, to be published in J. Phys. D.

    Google Scholar 

  77. P.C. Stangeby, J. Nucl. Mater. 128 & 129, 969 (1984).

    Article  Google Scholar 

  78. P.C. Stangeby, “Large Probes in Tokamak Scrape-Off Plasmas. The Collisionless Scrape-Off Layer: Operation in the Shadow of Limiters or Divertor Plates”, to be published in J. Phys. D.

    Google Scholar 

  79. P.C. Stangeby, J. Nucl. Mater 121, 36 (1984).

    Article  ADS  Google Scholar 

  80. Ref. 1, p. 176; Ref. 3, p. 257.

    Google Scholar 

  81. R. Budny and D. Manos, J. Nucl. Mater. 121, 41 (1984).

    Article  ADS  Google Scholar 

  82. P.C. Stangeby and J.E. Allen, J. Phys. A 3, 304 (1970).

    Article  ADS  MATH  Google Scholar 

  83. J.G. Andrews and P.C. Stangeby, J. Phys. A 3, L39 (1970).

    Article  ADS  Google Scholar 

  84. K.-U. Riemann, in Proceeding International Conference on Plasma Physics (Nagoya, Japan, 1980) Vol. I, p. 66.

    Google Scholar 

  85. A. Cavaliere, F. Engelmann, G. Onori,Internal Report L.G.I. 65/21, Frascati (1965).

    Google Scholar 

  86. A. H. Boozer, Princeton University Plasma Physics Laboratory Report MATT 1148 (1975).

    Google Scholar 

  87. K.-U. Riemann, Ph.D. Thesis, Ruhr-Universitat, Bochum (1977).

    Google Scholar 

  88. G.A. Emmert, R.M. Wieland, T. Mense, and J.N. Davidson, Phys. Fluids 23, 803 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. D.E. Post, J. Nucl. Mater. 128 & 129, 78 (1984).

    Article  Google Scholar 

  90. A.H. Shapiro, “The Dynamics and Thermodynamics of Compressible Fluid Flow”, Ronald Press, New York, Vol. I, p. 84 (1953).

    Google Scholar 

  91. K.-U. Riemann, Phys. Fluids 24, 2163 (1981).

    Article  ADS  MATH  Google Scholar 

  92. I.B. Chekmarev, E.M. Sklyaroba, and E.N. Kolesnikova, Beitr. Plasma Phys. 23, 411 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Stangeby, P.C. (1986). The Plasma Sheath. In: Post, D.E., Behrisch, R. (eds) Physics of Plasma-Wall Interactions in Controlled Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0067-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0067-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0069-5

  • Online ISBN: 978-1-4757-0067-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics