Skip to main content

Role of Prostacyclin and Thromboxane A2 in Ischaemic Heart Disease

  • Chapter
Thrombosis and Cardiovascular Disease

Abstract

Many investigations have shown that cardiac tissue is able to produce prostaglandins (PGs) of D, E, F series and over all prostacyclin (1–3) both in animals and in humans. Much evidence indicates that the primary site of PGs synthesis is the coronary vasculature and not the cardiac myocytes (3,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Needleman, D.L. Kay, P.C. Isakson, et al., Relationship between oxygen tension, coronary vasodilatation and prostaglandins biosynthesis in the isolated rabbit heart. Prostaglandins 9:123–134 (1975).

    Article  PubMed  CAS  Google Scholar 

  2. K. Schrör, S. Moncada, F.B. Ubatuba, and J.R. Vane, Transformation of arachidonic acid and prostaglandin endoperoxides by the guinea pig heart. Formation of RCS and prostacyclin. Europ. J. Pharmacol. 47:103–114 (1978).

    Article  Google Scholar 

  3. M. Sivakoff, E. Pure, W. Hsueh, and P. Needleman, Prostaglandins and the heart. Fed. Proc. 38:78–82 (1979).

    PubMed  CAS  Google Scholar 

  4. A. Wennmalm, Prostaglandin-mediated inhibition of noradrenaline release: VI. On the intra-cardiac source of prostaglandins released from isolated rabbit hearts. Acta Physiol. Scand. 105:254–256 (1979).

    Article  PubMed  CAS  Google Scholar 

  5. A.P. Raz, P.C. Isakson, M.S. Minkes, and P. Needleman, Characterization of a novel matabolic pathway of arachidonate in coronary arteries which generates a potent endogenous coronary vasodilator. J. Biol. Chem. 252:1123–1126 (1977).

    PubMed  CAS  Google Scholar 

  6. P. Maurer, M.A. Moskowitz, L. Levine, E. Melamed, The synthesis of prostaglandins by bovine cerebral microvessels. Prostagl. Med. 4:153–161 (1980).

    Article  CAS  Google Scholar 

  7. N.A. Terragno, and A. Terragno, Prostaglandin metabolism in the fetal and maternal vasculature. Fed. Proc. 38:75–77 (1979).

    PubMed  CAS  Google Scholar 

  8. H.H. Davis, W.A. Heaton, B.A. Siegel, C.J. Mathias, J.H. Joist, L.A. Sherman, and M.J. Welch, Scintigraphic detection of atherosclerotic lesions and venous thrombi in man by indium111 -labelled autologous platelets. Lancet i:1185–1187 (1978).

    Article  Google Scholar 

  9. P. Mehta, J. Mehta, C.J. Pepine, et al., Platelet aggregation across the myocardial vascular bed in man: normal versus diseased coronary arteries. Thromb. Res. 14:423–432 (1979).

    Article  PubMed  CAS  Google Scholar 

  10. E.F. Ellis, O. Oelz, L.J. Roberts, et al., Coronary arterial smooth muscle contraction by a substance released from platelets: evidence that it is thromboxane A2. Science 193: 1135–1137 (1976).

    Article  PubMed  CAS  Google Scholar 

  11. M. Hamberg, J. Svensson, and B. Samuelsson, Thromboxanes: a new group of biological active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci.(Wash.) 72: 2994–2998 (1975).

    Article  CAS  Google Scholar 

  12. P. Needleman, P.S. Kulkarni, and A. Raz, Coronary tone modulation: formation and actions of prostaglandins, endoperoxides and thromboxanes. Science 195:409–412 (1977).

    Article  PubMed  CAS  Google Scholar 

  13. Z.I. Terashi, H. Fukui, K. Nishikawa, et al., Coronary vasospastic action of thromboxane A2 in isolated, working guinea pig hearts. Europ. J. Pharmacol. 53:49–56 (1978).

    Article  Google Scholar 

  14. G. Kaley, The role of prostaglandins in vascular homeostasis. Fed. Proc. 35:2358–2359 (1976).

    PubMed  CAS  Google Scholar 

  15. P. Neeldeman, and G. Kaley, Cardiac and coronary prostaglandin synthesis and function. N. Engl. J. Med. 298:1122–1128 (1978).

    Article  Google Scholar 

  16. P. Hedqvist, Actions of prostacyclin (PGI2) on adrenergic neuroeffector transmission in the rabbit kidney. Prosta glandins 17:249–258 (1979).

    CAS  Google Scholar 

  17. A.G. Herman, T.J. Verbeuren, S. Moncada, and P.M. Van Houtte, Effects of prostacyclin on myogenic activity and adrenergic neurofactor interaction in canine isolated veins. Prostaglandins 16:911–921 (1978).

    Article  PubMed  CAS  Google Scholar 

  18. G.G. Neri Serneri, E. Silvestrini, P. Paoletti, and G. Masotti, Studi sulle sindromi trombofiliche. V. L’adesivita e 1’aggregazione delle piastrine nella malattia ateromasica. Riv. Clin. Med. 68, (suppl. 6), 47 (1978).

    Google Scholar 

  19. A. Szczeklik, R.J. Gryglewski, J. Musial, L. Grodzinska, M. Serwonska, and E. Marcinkiewicz, Thromboxane generation and platelet aggregation in survivals of myocardial infarction. Thromb. Haem. 40:66 (1978).

    CAS  Google Scholar 

  20. P. Mehta, J. Mehta, C.J. Pepine, T.D. Miale, and C. Burger, Platelet aggregation across the myocardial vascular bed in man: normal versus diseased coronary arteries. Thromb. Res. 14:423 (1979).

    Article  PubMed  CAS  Google Scholar 

  21. H.H. Davis, B.A. Siegel, J.H. Joist, W.A. Heaton, C.J. Mathias, L.A. Sherman, and M.J. Welch, Scintigraphic detection of atherosclerotic lesions and venous thrombi in mann by indiunv-111 -labelled autologous platelets. Lancet i:1185 (1978).

    Article  Google Scholar 

  22. M.K. Dewanjee, V. Puster, M. P. Kaye, and M. Josa, Imaging platelet deposition with 111-In-labelled platelets in coronary artery by pass grafts in dogs. Mayo. Clin. Proc. 53:327 (1978).

    PubMed  CAS  Google Scholar 

  23. S. Moncada, E.A. Higgs, and J.R. Vane, Human arterial and venous tissue generate prostacyclin (Prostaglandin X), a potent inhibitor of platelet aggregation. Lancet 1:18 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. S. Moncada, R. Gryglewski, S. Bunting, and J.R. Vane, An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:633 (1976).

    Article  Google Scholar 

  25. P. Needleman, S.D. Bronson, A. Wyche, M. Sivakoff, and K.G. Nicolau, Cardiac and renal prostaglandin I2 — Biosynthesis and biological effects in isolated perfused rabbit tissues. J. Clin. Invest. 61:839 (1978).

    Article  PubMed  CAS  Google Scholar 

  26. G.G. Neri Serneri, G. Masotti, L. Poggesi, and G. Galanti, Release of prostacyclin into the blood stream and its exhaustion in humans after local blood changes (ischemia and venous stasis). Thromb. Res. 17:197 (1980).

    Article  Google Scholar 

  27. E. Granström, H. Kindahl, and B. Samuelsson, Radioimmunoassay for thromboxane B2. Analyt. Lett. 9:611 (1976).

    Article  Google Scholar 

  28. R.R. Gorman, S.S. Bunting, and O.V. Miller, Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins 13:377 (1977).

    Article  PubMed  CAS  Google Scholar 

  29. E.W. Salzman, Platelets, prostaglandins and cyclic nucleotides. In: Platelets: a multidisciplinary approach. 1st ed., p.227, Editors: G. De Gaetano and S. Garattini, Raven Press, New York, (1978).

    Google Scholar 

  30. J.G. White, and J.M. Gerrard, Platelet morphology and the ultrastructure of regulatory mechanisms involved in platelet activation. In: Platelets: a multidisciplinary approach. 1st ed. p. 17, Editors: G. De Gaetano and S. Garattini, Raven Press, New York, (1978).

    Google Scholar 

  31. M. Minkes, N. Stanford, M.M.Y. Chi, A.R. Roth, P. Needleman, and P.W. Majerus, Cyclic adenosine 3′, 5′-monophosphate inhibits the availability of arachidonate to prostaglandin synthetase in human platelet suspensions. J. Clin. Invest. 59:449 (1977).

    Article  PubMed  CAS  Google Scholar 

  32. O.V.V. Miller, and R.R. Gorman, Modulation of platelet cyclic nucleotide content by PGE1 and the prostaglandins endo-peroxide PGG2. J. Clin. Nucl. Res. 2:7 (1976).

    Google Scholar 

  33. O.V. Miller, R.A. Johnson, and R.R. Gorman, Inhibition of PGE1-stimulated cAMP accumulation in human platelets by thromboxane A2. Prostaglandins 13:599 (1977).

    Article  PubMed  CAS  Google Scholar 

  34. R. Korbut, and S. Moncada, Prostacyclin and thromboxane A2 interaction in vivo. Regulation by aspirin and relationship with anti-thrombotic therapy. Thromb. Res. 13:489 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. L.C. Best, T.G. Martin, R.G.G. Russel, and F.E. Preston, Prostacyclin increase cyclic AMP levels and adenylate cyclase activity in platelets. Nature 267:850 (1977).

    Article  PubMed  CAS  Google Scholar 

  36. G.N. Brodie, N.L. Baenziger, L.R. Chase, and P.W. Majerus, The effects of thrombin on adenyl cyclase activity and a membrane protein from human platelets. J. Clin. Invest. 51:81 (1972).

    Article  PubMed  CAS  Google Scholar 

  37. S. Niewiarowski, and M. Millman, Potentiation of the thrombin induced platelet release reaction by fibrin. Thromb Res. 9:181 (1976).

    Article  PubMed  CAS  Google Scholar 

  38. G.G. Neri Serneri, R. Abbate, G.F. Gensini, C. Mugnaini, and A. Lagi, Occurrence of a plasmatic platelet aggregating activity in some patients with increased platelet aggregation, In: Advances in Coagulation, Fibrinolysis, Platelet Aggregation and Atherosclerosis, 1st ed., p. 396, Editor A. Strano, C.E.P.I. Roma (1976).

    Google Scholar 

  39. G.G. Neri Serneri, R. Abbate, C. Mugnaini, and G.F. Gensini, Increased platelet aggregation due to a plasma aggregating activity. Identification of the responsible factors. Haemostasis 8 (in press) (1979).

    Google Scholar 

  40. V. Hofmann, and P.W. Straub, A radioimmunoassay technique for the rapid measurement of human fibrinopeptide A. Thromb. Res. 11:71 (1977).

    Google Scholar 

  41. G.G. Neri Serneri, R. Abbate, G.F. Gensini, L. Poggesi, G. Masotti, S. Favilla, C. Mugnaini, and G. Galanti, Prostacyclin and thromboxane release in plasma after adrenergic stimulation. In: Myocardial Infarction, edited by D.T. Mason, G.G. Neri Serneri, M.F. Oliver, pp. 383–387, Excerpta Medica, Amsterdam (1979).

    Google Scholar 

  42. G.G. Neri Serneri, G. Masotti, L. Poggesi, R. Abbate, and M. Mannelli, Prostacyclin and thromboxane A2 formation in response to adrenergic stimulation in humans. A mechanism for local control of vascular response to sympathetic activation? Card. Res.(In press) (1981).

    Google Scholar 

  43. G.G. Neri Serneri, G. Masotti, L. Poggesi, G. Galanti, A. Morettini, and L. Scarti, Reduced prostacyclin production in patients with different manifestations of ischemic heart disease. Am. J. Cardiol. (In press) (1981).

    Google Scholar 

  44. M.J. Armstrong, G. Thirsk, and J.A. Salmon, Effects of prostacyclin (PGI2), 6-oxo-PGF and PGE2 on sympathetic nerve function in mesenteric arteries and veins of the rabbit in vitro. Hypertension 1:309–315 (1979).

    Article  PubMed  CAS  Google Scholar 

  45. H. Jasue, S. Tanaka, and F. Akiyama, Prinzmetal’s variant form of angina as a manifestation of alpha-adrenergic receptor-mediated coronary artery spasm: documantation by coronary arteriography. Am. Heart J. 91:148–155 (1976).

    Article  Google Scholar 

  46. D.L. Levene, and M.R. Friedman, Alpha-adrenoceptor-mediated coronary artery spasms. JAMA 236:1018–1022 (1976).

    Article  PubMed  CAS  Google Scholar 

  47. D.R. Ricci, A.E. Orlick, P.R. Cipriano, D.F. Guthaner, and D.C. Harrison, Altered adrenergic activity in coronary arterial spasm. Insight into a mechanism based on study of coronary hemodynamics and the electrocardiogram. Am. J. Cardiol. 43:1073–1079 (1979).

    Article  PubMed  CAS  Google Scholar 

  48. J.D. Folts, E.B. Crowell, and G.G. Rowe, Platelet aggregation in partially obstructed vessels and its elimination by aspirin. Circulation 54:365 (1976).

    Article  PubMed  CAS  Google Scholar 

  49. L.D. Hills, and E. Braunwald, Coronary-artery spasm. N. Engl. J. Med. 299, 695 (1978).

    Article  Google Scholar 

  50. G.H. Mudge, R.H. Grossman, R.H. Jr. Mills, M. Lesch, and E. Braunwald, Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N. Engl. J. Med. 295:1333 (1976).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Neri Serneri, G.G. et al. (1984). Role of Prostacyclin and Thromboxane A2 in Ischaemic Heart Disease. In: Strano, A. (eds) Thrombosis and Cardiovascular Disease. Advances in Experimental Medicine and Biology, vol 164. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8616-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8616-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8618-6

  • Online ISBN: 978-1-4684-8616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics