Skip to main content

Hydrogen Bonding and Donor—Acceptor Interactions

  • Chapter
Applications of Electronic Structure Theory

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 4))

Abstract

Ab initio calculations have played an important role in the development of the theory of the hydrogen bond. First, the calculations have been able to predict properties of hydrogen-bonded complexes prior to experimental observation. Second, the ab initio calculations have been the standard against which semiempirical MO calculations and model theories could be evaluated. Finally, these calculations have provided an important framework for understanding the chemical properties of the hydrogen bond, and its relation to other donor-acceptor interactions and to covalent bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. J. Schaad, Theory of the hydrogen bond, in: Hydrogen Bonding (M. D. Joesten and L. J. Schaad, eds.), Marcel Dekker, Inc., New York (1974), Chap. 2.

    Google Scholar 

  2. P. A. Kollman and L. C. Allen, The theory of the hydrogen bond, Chem. Rev. 72, 283 (1972).

    CAS  Google Scholar 

  3. S. H. Lin, in :Physical ChemistryAn Advanced Treatise, Vol. 5 (H. Eyring, D. Henderson, and W. Jost, eds.), Chap. 8, p. 439, Academic Press, New York (1970).

    Google Scholar 

  4. A. S. N. Murthy and C. N. R. Rao, Recent theoretical studies of the hydrogen bond, J. Mol. Struct. 6, 253 (1970).

    CAS  Google Scholar 

  5. M. A. Ratner and J. R. Sabin, The wave mechanical treatment of hydrogen bonded systems in: Wave MechanicsThe First Fifty Years (S. S. Chissick, W. C. Price, and T. Ravendale, eds.), Butterworths, London (1973).

    Google Scholar 

  6. J. N. Murrell, The hydrogen bond, Chem. Britain 5, 107 (1969).

    CAS  Google Scholar 

  7. S. Bratoz, Electronic theories of hydrogen bonding, Adv. Quantum Chem. 3, 209 (1967).

    CAS  Google Scholar 

  8. C. A. Coulson, The hydrogen bond—review of the present position, Research (London) 10, 149 (1957).

    CAS  Google Scholar 

  9. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, W. H. Freeman, San Francisco (1960).

    Google Scholar 

  10. N. D. Sokolov, De la théorie de la liaison hydrogène, Ann. Chim. Phys. 10, 497 (1965).

    CAS  Google Scholar 

  11. M. L. Huggins, 50 years of hydrogen bond theory, Angew. Chem. Int. Ed. Eng. 10, 147 (1971).

    CAS  Google Scholar 

  12. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69 (1951).

    CAS  Google Scholar 

  13. H. J. Kolker and M. Karplus, Theory of nuclear magnetic shielding in diatomic molecules, J. Chem. Phys. 41, 1259 (1964).

    CAS  Google Scholar 

  14. S. Iwata and K. Morokuma, Extended Hartree-Fock theory for excited states, Chem. Phys. Lett. 16, 192 (1973).

    Google Scholar 

  15. J. Del Bene, R. Ditchfield, and J. A. Pople, Self-consistent molecular orbital methods. X. Molecular orbital studies of excited states with minimal and extended basis sets, J. Chem. Phys. 55, 2236 (1971)

    Google Scholar 

  16. I. Shavitt, A general approach to configuration interaction, in:Modern Theoretical Chemistry, Vol. 3: Methods of Electronic Structure Theory (H. Schaefer, ed.), Chap. 6, Plenum Publishing, New York (1977).

    Google Scholar 

  17. A. C. Wahl and G. Das, Multiconfiguration self-consistent field method, in: Modern Theoretical Chemistry, Vol 3: Methods of Electronic Structure Theory (H. Schaefer, ed.), Chap. 3, Plenum Publishing, New York (1977).

    Google Scholar 

  18. H. Margenau and N. R. Kestner, The Theory of Intermolecular Forces, Pergamon Press, Oxford (1969).

    Google Scholar 

  19. F. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York (1968).

    Google Scholar 

  20. H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts (1972).

    Google Scholar 

  21. P. A. Kollman and C. F. Bender, The structure of the H3O+ (hydronium) ion, Chem. Phys. Lett. 21, 271 (1973).

    CAS  Google Scholar 

  22. H. F. Schaefer, D. R. McLaughlin, F. E. Harris, and B. J. Alder, Phys. Rev. Lett. 25, 988 (1970).

    CAS  Google Scholar 

  23. C. A. Coulson and U. Danielsson, Ionic and covalent contributions to the hydrogen bond I and II, Ark. Fys. 8, 239–245 (1954).

    CAS  Google Scholar 

  24. H. Tsubomura, The nature of the hydrogen bond. I. The delocalization energy in the hydrogen bond as calculated by the atomic orbital method, Bull. Chem. Soc. Japan. 27, 445 (1954).

    CAS  Google Scholar 

  25. F. B. van Duijneveldt and J. N. Murrell, Some calculations on the hydrogen bond, J. Chem. Phys. 46, 1759 (1967)

    Google Scholar 

  26. J. G. C. M. van Duijneveldt-van de Rijdt and F. B. van Duijneveldt, Perturbation calculations on the hydrogen bonds between some first row atoms, J. Am. Chem. Soc. 93, 5644 (1971) and references therein.

    Google Scholar 

  27. C. A. Coulson, The hydrogen bond, in : Hydrogen Bonding (D. Hadzi, ed.), p. 339, Pergamon Press, London (1959).

    Google Scholar 

  28. K. Morokuma, Molecular orbital studies of hydrogen bonds. III. C=O···H-O hydrogen bond in H2CO···H2O and H2CO···2H2O, J. Chem. Phys. 55, 1236 (1971).

    CAS  Google Scholar 

  29. M. Dreyfus and A. Pullman, A non-empirical study of the hydrogen bond between peptide units, Theor. Chim. Acta 19, 20 (1970).

    CAS  Google Scholar 

  30. P. A. Kollman and L. C. Allen, An SCF partitioning method for the hydrogen bond, Theor. Chim. Acta 18, 399 (1970).

    CAS  Google Scholar 

  31. P. A. Kollman and L. C. Allen, Hydrogen bonded dimers and polymers involving hydrogen fluoride, water and ammonia, J. Am. Chem. Soc. 92, 753 (1970)

    CAS  Google Scholar 

  32. P. A. Kollman and L. C. Allen, Hydrogen bonded dimers and polymers involving hydrogen fluoride, water and ammonia Chem. Rev. 72, 283 (1972).

    CAS  Google Scholar 

  33. M. van Thiel, E. D. Becker, and G. Pimentel, Infrared studies of hydrogen bonding of water by the matrix isolation technique, J. Chem. Phys. 27, 486 (1957).

    Google Scholar 

  34. T. H. Dunning and P. J. Hay, Basis sets for molecular calculations, in: Modern Theoretical Chemistry, Vol. 3: Methods of Electronic Structure Theory (H. Schaefer, ed.), Chap. 1, Plenum Publishing, New York (1977).

    Google Scholar 

  35. K. Morokuma and L. Pedersen, Molecular Orbital Studies of hydrogen bonds. An ab initio calculation for dimeric H2O, J. Chem. Phys. 48, 3275 (1968).

    CAS  Google Scholar 

  36. P. A. Kollman and L. C. Allen, Theory of the hydrogen bond: electronic structure and properties of the water dimer, J. Chem. Phys. 51, 3286 (1969).

    CAS  Google Scholar 

  37. J. Del Bene, Theoretical Study of open chain dimers and trimers containing CH3OH and H2O, J. Chem. Phys. 55, 4633 (1971).

    Google Scholar 

  38. J. Del Bene and J. A. Pople, Theory of molecular interactions. I. Molecular orbital studies of water polymer with a minimal Slater-type basis, J. Chem. Phys. 52, 4858 (1970).

    Google Scholar 

  39. K. Morokuma and J. R. Winick, Molecular orbital studies of hydrogen bonds: dimeric H2O with the Slater minimal basis set, J. Chem. Phys. 52, 1301 (1970).

    CAS  Google Scholar 

  40. D. Hankins, J. W. Moskowitz, and F. H. Stillinger, Water molecule interactions, J. Chem. Phys. 53, 4544 (1970).

    CAS  Google Scholar 

  41. G. H. F. Diercksen, SCF-MO-LCGO studies on hydrogen bonding. The water dimer, Theor. Chim. Acta 335(1971).

    Google Scholar 

  42. H. Popkie, H. Kistenmacher, and E. Clementi, Study of the structure of molecular complexes. IV. The Hartree-Fock potential for the water dimer and its application to the liquid state, J. Chem. Phys. 59, 1325 (1973).

    CAS  Google Scholar 

  43. A. Tursi and E. Nixon, Matrix isolation study of water dimer in solid nitrogen, J. Chem. Phys. 52, 154 (1970).

    Google Scholar 

  44. L. B. Magnusson, Infrared absorbance by water dimer in carbon tetrachloride solution, J. Phys. Chem. 74, 4221 (1970).

    CAS  Google Scholar 

  45. P. A. Kollman and A. D. Buckingham, The structure of the water dimer, Mol. Phys. 21, 567 (1971)

    CAS  Google Scholar 

  46. L. B. Magnusson, The structure of the water dimer, Mol. Phys. 21, 571 (1967).

    Google Scholar 

  47. P. W. Atkins and M. C. R. Symons, Infrared spectrum of water dimer in carbon tetrachloride solution, Mol. Phys. 23, 831 (1972).

    CAS  Google Scholar 

  48. T. R. Dyke, B. J. Howard, and W. Klemperer, Radiofrequency and microwave spectrum of the hydrogen fluoride dimer: a nonrigid molecule, J. Chem. Phys. 56, 2442 (1972).

    CAS  Google Scholar 

  49. T. R. Dyke and J. S. Muenter, Microwave spectrum and structure of hydrogen bonded water dimer, J. Chem. Phys. 60, 2929 (1974).

    CAS  Google Scholar 

  50. L. Shipman and H. A. Scheraga, Structure, energetics and Dynamics of the water dimer, J. Phys. Chem. 78, 2055 (1974).

    CAS  Google Scholar 

  51. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University Press, New York (1969).

    Google Scholar 

  52. J. D. Lambert, Association in polar vapours and binary vapour mixtures, Discuss. Faraday Soc. 15, 226 (1953)

    Google Scholar 

  53. J. S. Rowlinson, The lattice energy of ice and the second virial coefficient of water vapour, Trans. Faraday Soc. 47, 120 (1951).

    CAS  Google Scholar 

  54. H. A. Gebbie, W. J. Burroughs, J. Chamberlain, J. E. Harries, and R. J. Jones, Dimers of the water molecule in the earth’s atmosphere, Nature 221, 143 (1969).

    CAS  Google Scholar 

  55. T. H. Dunning and P. J. Hay, Basis sets for molecular calculations, in: Modern Theoretical Chemistry, Vol. 3: Methods of Electronic Structure Theory (H. Schaefer, ed.), Chap. 1, Plenum Publishing, New York (1977).

    Google Scholar 

  56. A. Johansson, P. Kollman, and S. Rothenberg, An application of the functional Boys-Bernardi counterpoise method to molecular potential surfaces, Theor. Chim. Acta 29, 167 (1973).

    CAS  Google Scholar 

  57. D. Neumann and J. W. Moskowitz, One electron properties of near-Hartree-Fock wave functions, I. Water, J. Chem. Phys. 49, 2056 (1968).

    CAS  Google Scholar 

  58. A. Rauk, L. C. Allen, and E. Clementi, Electronic structure and inversion barrier of ammonia, J. Chem. Phys. 52, 4133 (1970).

    CAS  Google Scholar 

  59. B. Lentz and H. A. Scheraga, Water molecule interactions. Stability of cyclic polymers, J. Chem. Phys. 58, 5296 (1973).

    CAS  Google Scholar 

  60. J. Del Bene and J. A. Pople, Theory of molecular interactions. III. A comparison of studies of H2O polymers using different molecular orbital basis sets, J. Chem. Phys. 58, 3605 (1973).

    Google Scholar 

  61. J. Janzen and L. S. Bartell, Electron diffraction study of polymeric gaseous hydrogen fluoride, J. Chem. Phys. 50, 3611 (1969).

    CAS  Google Scholar 

  62. P. A. Kollman and L. C. Allen, Theory of the hydrogen bond: ab initio calculations on hydrogen fluoride dimer and the mixed water-hydrogen fluoride dimer, J. Chem. Phys. 52, 5085 (1970).

    CAS  Google Scholar 

  63. G. H. F. Diercksen and W. P. Kraemers, SCF-MO-LCGO studies on hydrogen bonding: the hydrogen fluoride dimer, Chem. Phys. Lett. 6, 419 (1970).

    CAS  Google Scholar 

  64. J. Del Bene and J. A. Pople, Theory of molecular interactions. II. Molecular orbital studies of HF polymer using a minimal Slater-type basis, J. Chem. Phys. 55, 2296 (1971).

    Google Scholar 

  65. L. C. Allen and P. A. Kollman, Cyclic systems containing divalent hydrogen symmetrically placed between sp 2 hydribized electron rich atoms. A new form of chemical bond?, J. Am. Chem. Soc. 92, 4108 (1970).

    CAS  Google Scholar 

  66. H. Lischka, Ab initio calculations on inter-molecular forces. III. Effect of electron correlation on the hydrogen bond in the hydrogen fluoride dimer, J. Am. Chem. Soc. 96, 4761 (1974).

    CAS  Google Scholar 

  67. D. R. Yarkony, S. V. O’Neil, H. F. Schaefer III, C. P. Baskin, and C. F. Bender, Interaction potential between two rigid HF molecules, J. Chem. Phys. 60, 855 (1974).

    CAS  Google Scholar 

  68. E. Clementi, J. Mehl, and W. von Niessen, Study of the electronic structure of molecules. XII. Hydrogen bridges in the guanine-cytosine pair and in the dimeric form of formic acid, J. Chem. Phys. 54, 508 (1971).

    CAS  Google Scholar 

  69. M. Dreyfus, B. Maigret, and A. Pullman, A non-empirical study of hydrogen bonding in the dimer of formamide, Theor. Chim. Ada 17, 109 (1970).

    CAS  Google Scholar 

  70. E. Clementi and J. N. Gayles, Study of the electronic structure of molecules. VII. Inner and outer complex in the NH4Cl formation from NH3 and HCl, J. Chem. Phys. 47, 3837 (1967) and references therein.

    CAS  Google Scholar 

  71. P. Goldfiner and G. Verhaegen, Stability of the gaseous ammonium chloride molecule, J. Chem. Phys. 50, 1467 (1969).

    Google Scholar 

  72. B. S. Ault and G. C. Pimentel, Infrared spectra of the ammonia-hydrochloric acid complex in solid nitrogen, J. Phys. Chem. 77, 1649 (1973).

    CAS  Google Scholar 

  73. P. Kollman, A. Johansson, and S. Rothenberg, A comparison of HCl and HF as proton donors, Chem. Phys. Lett. 24, 199 (1974).

    CAS  Google Scholar 

  74. B. S. Ault and G. C. Pimentel, Infrared spectrum of the water-hydrochloric acid complex in solid nitrogen, J. Phys. Chem. 77, 57 (1973).

    CAS  Google Scholar 

  75. M. D. Newton and S. Ehrenson, Ab initio studies on the structures and energetics of inner and outer shell hydrates of the proton and the hydroxide ion, J. Am. Chem. Soc. 93, 4971 (1971).

    CAS  Google Scholar 

  76. P. Kebarle, S. K. Searle, A. Zolla, J. Scarborough, and M. Arshadi, The solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solutions of individual reactions H+(H2O) n -1+H2O → H+(H2O) n , J. Am. Chem. Soc. 89, 6393 (1967).

    CAS  Google Scholar 

  77. W. Kraemer and G. Diercksen, SCF-LCGO-MO calculations on hydrogen bonding. The hydrogen fluoride dimer, Chem. Phys. Lett. 5, 463 (1970)

    CAS  Google Scholar 

  78. P. A. Kollman and L. C. Allen, A theory of the strong hydrogen bond. Ab initio calculations on HF- 2 and H5O+ 2, J. Am. Chem. Soc. 92, 6101 (1970).

    CAS  Google Scholar 

  79. H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. V. Heat of formation for the Li+, Na+, K+, F- and Cl- complexes with a single water molecule, J. Chem. Phys. 59, 5842 (1973).

    CAS  Google Scholar 

  80. M. Arshadi, R. Yamdagni, and P. Kebarle, Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions, J. Phys. Chem. 74, 1475 (1970).

    CAS  Google Scholar 

  81. S. Bratoz and G. Bessis, Study of the structure of the FHF ion by the method of configuration interaction, C. R. Acad. Sci., Ser. C 249, 1881 (1959).

    CAS  Google Scholar 

  82. R. M. Erdahl, Valence bond theory and the electronic structure of molecules, Ph.D. thesis, Princeton University, 1965.

    Google Scholar 

  83. E. Clementi and A. D. McLean, SCF-LCAO-MO wave functions for the bifluoride ion, J. Chem. Phys. 36, 745 (1962).

    CAS  Google Scholar 

  84. A. D. McLean and M. Yoshimine, Tables of linear molecules, IBM J. Res. Dev. 11, 169 (1967).

    Google Scholar 

  85. P. A. Kollman and L. C. Allen, Theory of the strong hydrogen bond. Ab initio calculation on HF2 and H5O2, J. Am. Chem. Soc. 92, 6101 (1970).

    CAS  Google Scholar 

  86. P. Noble and R. Kortzeborn, LCAO-MO-SCF studies of HF- 2 and the related unstable systems HF2 and HeF2, J. Chem. Phys. 52, 5375 (1970).

    CAS  Google Scholar 

  87. J. Almlöf, Hydrogen bond studies 71. Ab initio calculations of the vibrational structure and equilibrium geometry in HF- 2 and DF- 2, Chem. Phys. Lett. 17, 49 (1972).

    Google Scholar 

  88. P. Bertoncini and A. C. Wahl, Ab initio calculation of the helium-helium potential at intermediate and large separations, Phys. Rev. Lett. 25, 991 (1970).

    CAS  Google Scholar 

  89. H. F. Schaefer, D. R. McLaughlin, F. E. Harris, and B. J. Alder, Calculation of the attractive He pair potential, Phys. Rev. Lett. 25, 988 (1970).

    CAS  Google Scholar 

  90. H. Lischka, Ab initio calculations on intermolecular forces. The systems He···HF and He-H2O, Chem. Phys. Lett. 20, 448 (1973).

    CAS  Google Scholar 

  91. M. Losonszy, J. W. Moskowifz, and F. H. Stillinger, Hydrogen bonding between neon and hydrogen fluoride, J. Chem. Phys. 61, 2438 (1974).

    Google Scholar 

  92. M. Losonszy, J. W. Moskowitz, and F. H. Stillinger, Hydrogen bonding between neon and water, J. Chem. Phys. 59, 3264 (1973).

    Google Scholar 

  93. S. E. Novick, P. Davies, S. J. Harris, and W. Klemperer, Determination of the structure of ArHCl, J. Chem. Phys. 59, 2273 (1973)

    CAS  Google Scholar 

  94. S. J. Harris, S. E. Novick, and W. Klemperer, Determination of the structure of ArHF, J. Chem. Phys. 60, 3208 (1974).

    CAS  Google Scholar 

  95. C. P. Baskin, C. F. Bender, and P. A. Kollman, Dimers of lithium fluoride and sodium hydride, J. Am. Chem. Soc. 95, 5868 (1973).

    CAS  Google Scholar 

  96. P. A. Kollman, S. Rothenberg, and C. F. Bender, A theoretical prediction of the existence and properties of the lithium hydride dimer, J. Am. Chem. Soc. 94, 8016 (1972).

    CAS  Google Scholar 

  97. D. S. Marynick, J. H. Hall, and W. N. Lipscomb, Energy of formation of B2H6 from 2BH3 near the Hartree-Fock limit, JCP 61, 5460 (1974).

    CAS  Google Scholar 

  98. R. Ahlrichs, Correlation contribution to the dimerization of BH3 and LiH, Theor. Chim. Acta 35, 59 (1974).

    CAS  Google Scholar 

  99. E. Clementi and H. Popkie, Study of the structure of molecular complexes. I. Energy surface of a water molecule in the field of a lithium positive ion, J. Chem. Phys. 57, 1077 (1972).

    CAS  Google Scholar 

  100. G. H. F. Diercksen and W. P. Kraemer, SCF-MO-LCGO studies on the hydration of ions: the systems H+ H2O, Li+ H2O and Na+ H2O, Theor. Chim. Acta 23, 387 (1972);

    CAS  Google Scholar 

  101. G. H. F. Diercksen and W. P. Kraemer SCF-MO-LCGO studies on the hydration of ions: The system Li+ 2H2O, Theor. Chim. Acta 23, 393 (1972).

    Google Scholar 

  102. P. A. Kollman and I. D. Kuntz, The hydration number of Li+, J. Am. Chem. Soc. 96, 4766 (1974).

    CAS  Google Scholar 

  103. P. Schuster and H. W. Preuss, Ab initio calculations on the hydration of monatomic cations (LCAO-MO studies of molecular structure VII), Chem. Phys. Lett. 11, 35 (1971).

    CAS  Google Scholar 

  104. L. A. Curtiss and J. A. Pople, Molecular orbital calculation of some vibrational properties of the complex between HCN and HF, J. Mol. Spectrosc. 48, 413 (1973).

    CAS  Google Scholar 

  105. L. A. Curtiss and J. A. Pople, Ab initio calculation of the vibrational force field of the water dimer, J. Chem. Phys. (in press).

    Google Scholar 

  106. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).

    Google Scholar 

  107. R. K. Thomas, Hydrogen bonding in the gas phase: the infrared spectrum of complexes of hydrogen fluoride with hydrogen cyanide and methyl cyanide, Proc. R. Soc. London, Ser. A 325, 133 (1971).

    CAS  Google Scholar 

  108. P. V. Huong and M. Couzi, The ir spectrum of gaseous hydrogen fluoride, J. Chem. Phys. 66, 1309 (1969).

    Google Scholar 

  109. R. W. Bolander, J. L. Cassner, and J. T. Zung, Semi-empirical determination of the hydrogen bond energy for water to the dimer, clusters in the vapor phase. I. General theory and application to the dimer, J. Chem. Phys. 50, 4402 (1969).

    CAS  Google Scholar 

  110. P. A. Kollman and L. C. Allen, The nature of the hydrogen bond. Dimers involving the electronegative atom of the first row, J. Am. Chem. Soc. 93, 4991 (1971).

    CAS  Google Scholar 

  111. P. A. Kollman, J. McKelvey, A. Johansson, and S. Rothenberg, Theoretical Studies of hydrogen bonded dimers: complexes involving HF, H2O, NH3, HCl, H2S, PH3, HCN, HNC, HCP, CH2NH, H2CS, H2CO, CH4, CF3H, C2H2, C2H4, C6H6, F- and H3O+, J. Am. Chem. Soc. 97, 955 (1975).

    CAS  Google Scholar 

  112. W. Topp and L. C. Allen, Structure and properties of hydrogen bonds between the electronegative atoms of the second and third rows, J. Am. Chem. Soc. 96, 5291 (1974).

    CAS  Google Scholar 

  113. E. U. Franck and F. Meyer, HF III, Specific heat and association in the gas phase at low pressure, J. Electrochem. 63, 577 (1959).

    Google Scholar 

  114. J. E. Lowder, Spectroscopic studies of hydrogen bonding in ammonia, J. Quant. Spectrosc. Radiat. Transfer 10, 1085 (1970).

    CAS  Google Scholar 

  115. A. D. H. Clague, G. Govil, and H. J. Bernstein, Medium effects in nuclear magnetic resonance. VII. Vapor phase studies of hydrogen bonding in methanol and methanoltrimethyl amine mixtures, Can. J. Chem. 47, 625 (1969).

    CAS  Google Scholar 

  116. A. Foldes and C. Sandorfy, Anharmonicity and hydrogen bonding. III. Examples of strong bonds. General discussion, J. Mol. Spectrosc. 20, 262 (1966).

    CAS  Google Scholar 

  117. J. Del Bene, Molecular orbital theory of the hydrogen bond. IV. The effect of hydrogen bonding on the n → π transition in dimers ROH···OCH2, J. Am. Chem. Soc. 95, 6517 (1973).

    Google Scholar 

  118. S. Iwata and K. Morokuma, Molecular orbital studies of hydrogen bonds. V. Analysis of the hydrogen-bond energy between lower excited states of H2CO and H2O, J. Am. Chem. Soc. 95, 7563 (1973).

    CAS  Google Scholar 

  119. J. Del Bene, On the blue shift of the nπ* band of acetone in water, J. Am. Chem. Soc. 96, 5643 (1974).

    Google Scholar 

  120. S. Iwata and K. Morokuma, Molecular orbital studies of hydrogen bonds. VI. Origin of red shift of ππ* transitions: trans-acrolein-water complex, J. Am. Chem. Soc. 97, 966 (1975).

    CAS  Google Scholar 

  121. K. Morokuma, S. Iwata, and W. Lathan, Molecular interactions in ground and excited states, in : The World of Quantum Chemistry (R. Daudel and B. Pullman, eds.), D. Reidel Publishing Co., Dordrecht-Holland (1974).

    Google Scholar 

  122. M. Jaszunski and A. J. Sadlej, Proton magnetic shielding in the water molecule, Theor. Chim. Acta 27, 135 (1972).

    CAS  Google Scholar 

  123. A. P. Zens, P. D. Ellis, and R. Ditchfield, The carbon-13 nuclear magnetic resonance chemical shifts of the fluoroallenes. A comparison between theory and experiment, J. Am. Chem. Soc. 96, 1309 (1974).

    CAS  Google Scholar 

  124. S. D. Christian and B. M. Keenan, Complexes of hydrogen chloride with ethers in carbon tetrachloride and heptane. Effects of induction of the basicity of ethers, J. Phys. Chem. 78, 432 (1974).

    CAS  Google Scholar 

  125. H. D. Mettee, Vapor-phase dissociation energy of (HCN)2, J. Phys. Chem. 77, 1762 (1973).

    CAS  Google Scholar 

  126. A. Johansson, P. A. Kollman, and S. Rothenberg, The electronic structure of the hydrogen cyanide dimer and trimer, Theor. Chim. Acta 26, 97 (1972).

    CAS  Google Scholar 

  127. J. R. Sabin, Hydrogen bonds involving sulfur. I. The hydrogen sulfide dimer, J. Am. Chem. Soc. 93, 3613 (1971).

    CAS  Google Scholar 

  128. J. E. Lowder, L. A. Kennedy, K. G. P. Sulzman, and S. S. Penner, Spectroscopic studies of hydrogen bonding in hydrogen sulfide, J. Quant. Spectrosc. Radiat. Transfer 10, 17 (1970).

    CAS  Google Scholar 

  129. G. Govil, A. D. H. Clague, and H. J. Bernstein, Medium effects in NMR. VI. Vapor phase studies of hydrogen bonding between dimethyl ether and hydrogen chloride, J. Chem. Phys. 49, 2821 (1968).

    CAS  Google Scholar 

  130. H. Poland and H. A. Scheraga, Energy parameters in polypeptides. I. Charge distributions and the hydrogen bond, Biochem. 6, 3791 (1967).

    CAS  Google Scholar 

  131. A. D. H. Clague and H. J. Bernstein, Heat of dimerization of some carboxylic acids in the vapor phase determined by a spectroscopic method, Spectrochim. Acta 25A, 593 (1969).

    Google Scholar 

  132. I. Dzidic and P. Kebarle, Hydration of alkali ions in the gas phase. Enthalpies and entropies of Reactions M+(H2O) n -1+H2O → M+(H2O) n , Chemistry 74, 1466 (1970).

    CAS  Google Scholar 

  133. M. Eisenstadt, P. Rothberg, and P. Kusch, Molecular composition of alkali fluoride vapors, J. Chem. Phys. 29, 797 (1958).

    CAS  Google Scholar 

  134. W. Hug and I. Tinoco, Electronic spectrum of nucleic acid bases. I. Interpretation of the in-plane spectra with the aid of all-valence electron MO-CI (configuration interaction) calculations, J. Am. Chem. Soc. 95, 2803 (1973).

    CAS  Google Scholar 

  135. L. C. Allen, A simple model of hydrogen bonding, J. Am. Chem. Soc. 97, 6921 (1976).

    Google Scholar 

  136. J. Donohue, Selected topics in hydrogen bonding, in: Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), W. H. Freeman, San Francisco (1968).

    Google Scholar 

  137. J. Kroon, J. A. Kanters, J. G. C. M. van Duijneveldt-van de Rijdt, F. B. van Duijneveldt, and J. A. Vliegenthart, O-H···O hydrogen bonds in molecular crystals. A statistical and quantum chemical analysis, J. Mol. Struct. 24, 109 (1975).

    CAS  Google Scholar 

  138. J. Del Bene, Molecular orbital theory of the hydrogen bond. VII. Series of dimers having ammonia as the proton acceptor, J. Am. Chem. Soc. 95, 5460 (1973).

    Google Scholar 

  139. P. A. Kollman, A theory of hydrogen bond directionality, J. Am. Chem. Soc. 94, 1837 (1972).

    CAS  Google Scholar 

  140. F. van Duijneveldt, personal communication to P. A. Kollman.

    Google Scholar 

  141. A. Johansson, P. Kollman, and S. Rothberg, An ab initio molecular orbital study of intramolecular H-bonding: 1,3-propanediol, Chem. Phys. Lett. 18, 276 (1973).

    CAS  Google Scholar 

  142. W. Meyer, W. Jakubetz, and P. Schuster, Correlation effects on energy curves for proton motion. The cation [H5O2]+, Chem. Phys. Lett. 21, 97 (1973).

    CAS  Google Scholar 

  143. M. J. T. Bowers and R. M. Pitzer, Bond orbital analysis of the hydrogen bond in the linear water dimer, J. Chem. Phys. 59, 163 (1973).

    CAS  Google Scholar 

  144. W. H. Fink, Approach to partially predetermined electronic structure. The Li-He interaction potential, J. Chem. Phys. 57, 1822 (1972).

    CAS  Google Scholar 

  145. W. von Niessen, A Theory of molecules in molecules III. Application to the interaction between 2FH molecules, Theor. Chim Acta 31, 297 (1973).

    Google Scholar 

  146. W. von Niessen, A theory of molecules in molecules. IV. Application to the hydrogen bonding interaction in NH3H2O, Theor. Chim. Acta 32, 13 (1974).

    Google Scholar 

  147. R. Bonaccorsi, A. Pullman, E. Scrocco, and J. Tomasi, N vs. O proton affinities of the amide group: ab initio electrostatic molecular potentials, Chem. Phys. Lett. 12, 622 (1972).

    CAS  Google Scholar 

  148. S. Yamabe and K. Morokuma, J. Am. Chem. Soc. 97, 4458 (1975).

    CAS  Google Scholar 

  149. H. Ratajczak and W. Orville-Thomas, Charge transfer theory and vibrational properties of the hydrogen bond, J. Mol. Struct. 19, 237 (1972).

    Google Scholar 

  150. P. A. Kollman, J. F. Liebman, and L. C. Allen, The lithium bond, J. Am. Chem. Soc. 92, 1142 (1970).

    CAS  Google Scholar 

  151. A. Johansson, P. Kollman, and J. Liebman, Substituent effects on proton affinities, J. Am. Chem. Soc. 96, 3750 (1974).

    CAS  Google Scholar 

  152. P. Kollman, unpublished.

    Google Scholar 

  153. J. L. Beauchamp, Ion cyclotron resonance, Ann. Rev. Phys. Chem. 22, 527 (1971); M. S. Foster and J. L. Beachamp, unpublished.

    CAS  Google Scholar 

  154. W. Lathan and K. Morokuma, Molecular orbital studies of electron donor-acceptor complexes. I. Carbonyl cyanide-ROR and tetracyanoethylene-ROR complexes, J. Am. Chem. Soc. 97, 3615 (1975).

    CAS  Google Scholar 

  155. C. F. Bender, C. W. Bauschlicher, and H. F. Schaefer, Saddle point geometry and barrier height for H + F2 → HF+F, J. Chem. Phys. 60, 3707 (1974).

    CAS  Google Scholar 

  156. G. Anderson, Semi-empirical study of hydrogen bonding in the diaquohydrogen ion H5O2, J. Phys. Chem. 77, 2560 (1973).

    CAS  Google Scholar 

  157. H. Kistenmacher, H. Popkie, E. Clementi, and R. O. Watts, Study of the structure of molecular complexes. VII. Effect of correlation energy corrections to the Hartree-Fock water-water potential on Monte Carlo simulations of liquid water, J. Chem. Phys. 60, 4455 (1974).

    CAS  Google Scholar 

  158. F. Stillinger and A. Rahman, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys. 60, 1545 (1974).

    CAS  Google Scholar 

  159. M. D. Newton, Ab initio Hartree-Fock calculations with inclusion of a polarized dielectric; formalism and application to the ground state hydrated electron, J. Chem. Phys. 58, 5833 (1973).

    CAS  Google Scholar 

  160. J. Hylton, R. E. Christoffersen, and G. G. Hall, A model for the ab initio calculation of some solvent effects, Chem. Phys. Lett. 24, 501 (1974).

    CAS  Google Scholar 

  161. J. Bacon and D. P. Santry, Molecular orbital theory for infinite systems: hydrogen bonded molecular crystals, J. Chem. Phys. 56, 2011 (1972).

    CAS  Google Scholar 

  162. J. Almlöf, Ave Kvick, and J. O. Thomas, Hydrogen bond studies. 77. Electron density and distribution in α glycine: X-N difference Fourier synthesis vs. ab initio calculations, J. Chem. Phys. 59, 3901 (1973).

    Google Scholar 

  163. R. R. Lucchese and H. F. Schaefer III, Charge transfer complexes. NH3-F2, NH3Cl2, NH3-CIF, N(CH3)3-F2, N(CH3)3-Cl2 and N(CH3)3-CIF, J. Am. Chem. Soc. (submitted).

    Google Scholar 

  164. S. Nagakura, Molecular complexes and their spectra: the molecular complex between iodine and triethylamine, J. Am. Chem. Soc. 80, 520 (1958).

    CAS  Google Scholar 

  165. M. Hanna, Bonding in donor acceptor complexes. I. Electrostatic contribution to the ground state properties of benzene-halogen complexes, J. Am. Chem. Soc. 90, 285 (1968).

    CAS  Google Scholar 

  166. R. Lefevre, D. V. Radford, and P. S. Stiles, The degree of charge transfer in the ground state of molecular π complexes, J. Chem. Soc. London, Ser. B, 1297 (1968).

    Google Scholar 

  167. M. S. Gordon, D. E. Tallman, C. Monroe, M. Steinback, and J. Ambrust, Localized orbital studies of hydrogen bonding. II. Dimers containing H2O, NH3, HF, H2CO and HCN, J. Am. Chem. Soc. 97, 1326 (1975).

    CAS  Google Scholar 

Note Added in Proof

  1. H. Umeyama and K. Morokuma, Molecular orbital studies of electron donor-acceptor complexes. IV. Energy decomposition analysis for halogen complexes: H3N-F2, H3N-Cl2, H3N-ClF, CH3H2N-ClF, H2CO-F2 and F2-F2, J. Am. Chem. Soc. 99, 330 (1977)

    CAS  Google Scholar 

  2. H. Umeyama and K. Morokuma The origin of hydrogen bonding, J. Am. Chem. Soc. 99, 1316 (1977).

    CAS  Google Scholar 

  3. K. Kitaura and K. Morokuma, Int. J. Quant. Chem. 10, 325 (1976).

    CAS  Google Scholar 

  4. P. Kollman and I. D. Kuntz, The hydration of NH4F, J. Am. Chem. Soc. 98, 6820 (1976).

    CAS  Google Scholar 

  5. J. O. Noell and K. Morokuma, A fractional charge model in the MO theory and its application to molecules in solutions and solids, J. Phys. Chem. 80, 2675 (1976).

    CAS  Google Scholar 

  6. J. McCreery, R. E. Christoffersen, and G. G. Hall, J. Am. Chem. Soc. 98, 7191,7198 (1976).

    CAS  Google Scholar 

  7. M. Newton, J. Phys. Chem. 79, 2795 (1975).

    CAS  Google Scholar 

  8. G. Dierksen, W. Kraemer, and B. Roos, Theor. Chim. Acta 36, 249 (1975).

    Google Scholar 

  9. O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1361 (1976).

    Google Scholar 

  10. J. Dill, L. C. Allen, W. C. Topp, and J. A. Pople, Am. Chem. Soc. 97, 7220 (1975).

    CAS  Google Scholar 

  11. R. Ditchfield, J. Chem. Phys. 65, 3123 (1976).

    CAS  Google Scholar 

  12. S. Dietrich, S. Rothenberg, E. C. Jorgensen, and P. Kollman, A theoretical study of intramolecular H-bonding in phenols and thiophenols, J. Am. Chem. Soc. 98, 8310 (1976).

    CAS  Google Scholar 

  13. M. Newton and G. Jeffrey, The stereochemistry of the α-hydroxy carboxylic acids and related systems, J. Am. Chem. Soc. (in press).

    Google Scholar 

  14. J. Del Bene and A. Vaccaro, A molecular orbital study of protonation. Substituted carbonyl compounds, J. Am. Chem. Soc. 98, 7526 (1976).

    Google Scholar 

  15. H. Umeyama and K. Morokuma, J. Am. Chem. Soc. 98, 4400 (1976).

    CAS  Google Scholar 

  16. P. Kollman and S. Rothenberg, A theoretical study of basicity: Proton affinities, Li+ affinities and H-bond affinities of simple molecules, J. Am. Chem. Soc. 99, 1333 (1977).

    CAS  Google Scholar 

  17. M. Trenary, H. F. Schaefer, and P. Kollman, A novel type of complex, J. Am. Chem. Soc. (in press).

    Google Scholar 

  18. P. Kollman, A general analysis of noncovalent interactions, J. Am. Chem. Soc. (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Kollman, P.A. (1977). Hydrogen Bonding and Donor—Acceptor Interactions. In: Schaefer, H.F. (eds) Applications of Electronic Structure Theory. Modern Theoretical Chemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8541-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8541-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8543-1

  • Online ISBN: 978-1-4684-8541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics