Skip to main content

Ambivalence on the Multiplicity of Mammalian Aromatic L-Amino Acid Decarboxylase

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 294))

Abstract

Hydroxytryptophan is decarboxylated to 5-hydroxytryptamine (serotonin) by aromatic L-amino acid decarboxylase which requires pyridoxal phosphate and is widely distributed throughout mammalian tissues, occurring most abundantly in the pineal gland, liver, kidney, adrenal medulla, and striatum. Earlier studies concluded that 3,4-dihydroxyphenylalanine decarboxylase (which catalyzes the decarboxylation of dopa, producing dopamine) and 5-hydroxytryptophan decarboxylase (which catalyzes the decarboxylation of 5-hydroxytryptophan, yielding serotonin) are the same enzyme, which the IUPAC Commission on Biomedical Nomenclature in 1972 named aromatic L-amino acid decarboxylase (EC 4.1.1.28). However, recent studies have questioned the validity of a single enzyme capable of decarboxylating both substrates. For example, since the pineal gland accumulates a large concentration of serotonin, melatonin and other indoleamines, it is assumed that the enzyme functions as a 5-hydroxytryptophan decarboxylase. On the other hand, since the striatum and the adrenal medulla accumulate mainly dopamine, norepinephrine and epinephrine, it is felt that the enzyme primarily decarboxylates dopa. Other factors dealing with the complexity of catalytic process are the results of reports revealing that both dopa decarboxylase and histidine decarboxylase exhibit complete immunochemical cross reactivity, suggesting the presence of similar antigenic recognition sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, V.R., Allen, J.M., and Joh, T.H., 1987, A single gene codes for aromatic L-amino acid decarboxylase in both neuronal and non-neuronal tissues, J. Biol. Chem., 262: 9404–9411.

    PubMed  CAS  Google Scholar 

  • Aures, D., and Hakanson, R., 1971, Histidine decarboxylase, in: “Methods in Enzymology”, Vol. 17, Part B, Colowick, S.P., and Kaplan, N.O., eds., Academic Press, New York, pp. 667–677.

    Google Scholar 

  • Awapara, J., and Saine, S., 1975, Fluctuations in dopa decarboxylase activity with age, J. Neurochem., 24: 817–818.

    PubMed  CAS  Google Scholar 

  • Awapara, J., Sandman, R.P., and Hanly, C., 1962, Activation of dopa decarboxylase by pyridoxal phosphate, Arch. Biochem. Biophsys., 98: 520–525.

    Article  CAS  Google Scholar 

  • Blaschko, H., 1939, The specific action of L-dopa decarboxylase, J. Physiol., 96: 50P–51P.

    Google Scholar 

  • Blaschko, H., 1945, The amino acid decarboxylase of mammalian tissues, Adv. Enzymol., 5: 67–85.

    CAS  Google Scholar 

  • Borri Voltattorni, C., Giartosio, A., and Turano, C., 1987, Aromatic L-amino acid decarboxylase from pig kidney, in: “Methods in Enzymology”, Vol. 142, Kaufman, S., ed., Academic Press, New York, pp. 179–187.

    Google Scholar 

  • Boulton, A.A., 1978, The tyramines: functionally significant biogenic amines or metabolic accidents? Life Sci., 23: 659–672.

    Article  PubMed  CAS  Google Scholar 

  • Bowsher, R.R., and Henry, D.P., 1983, Decarboxylation of p-tyrosine: a potential source of p-tyramine in mammalian tissues, J. Neurochem., 40: 992–1002.

    Article  PubMed  CAS  Google Scholar 

  • Bowsher, R.R., and Henry, D.P., 1986, Aromatic L-amino acid decarboxylase: biochemistry and functional significance, in: “Neuromethods. 5. Neurotransmitter Enzymes”, Boulton, A.A., Baker, G.B., and Yu, P.H., eds., Humana Press, Clifton, New Jersey, pp. 33–78.

    Google Scholar 

  • Carlsson, M., and Carlsson, A., 1988, A regional study of sex differences in rat brain serotonin, Prog. Neuropsychopharmacol. Biol. Psychiat., 12: 53–61.

    Article  CAS  Google Scholar 

  • Christenson, J.G., Dairman, W., and Udenfriend, S., 1970, Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase from hog kidney, Arch. Biochem. Biophys., 141: 356–367.

    Article  PubMed  CAS  Google Scholar 

  • Christenson, J.G., Dairman, W., and Udenfriend, S., 1972, On the identity of dopa decarboxylase and 5-hydroxytryptophan decarboxylase, Proc. Natl. Acad. Sci. USA, 69: 343–347.

    Article  PubMed  CAS  Google Scholar 

  • Dairman, W., and Christenson, J.G., 1972, Dopa decarboxylating activity of human erythrocytes, Fed. Proc, 31: 590.

    Google Scholar 

  • Dairman, W., Horst, W.D., Marchell, M.E., and Bautz, G., 1975, The proportionate loss of L-3,4-dihydroxyphenylalanine and L-5-hydroxytryptophan decarboxylating activity in rat central nervous system following intracisternal administration of 5,6-dihydroxytryptamine or 6-hydroxydopamine, J. Neurochem., 24: 619–623.

    PubMed  CAS  Google Scholar 

  • Dakshinamurti, K., Paulose, C.S., Viswanathan, M., and Siow, Y.L., 1988, Neuroendocrinology of pyridoxine deficiency, Neurosci. Biobehav. Rev., 12: 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Ebadi, M., 1984, Regulation of the synthesis of melatonin and its significance to neuroendocrinology, in: “The Pineal Gland”, Reiter, R.J., ed., Raven Press, New York, pp. 1–37.

    Google Scholar 

  • Fragoulis, E.G., and Sekeris, C.E., 1975, Purification and characteristics of DOPA-decarboxylase from the integument of Calliphora vicina larvae, Arch. Biochem. Biophys., 168: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M., Anagnoste, B., Freedman, L.S., Roffman, M., Ebstein, R.P., Park, D.H., Fuxe, K., and Hökfelt, T., 1973, Characterization, localization and regulation of catecholamine synthesizing enzymes, in: “Frontiers in Catecholamine Research”, Usdin, E., and Snyder, S., eds., Pergamon, New York, pp. 69–78.

    Google Scholar 

  • Holtz, P., Heise, R., and Luedtke, K., 1938, Enzymic destruction of L-dopa by the kidney, Arch. Exp. Path. Pharmakol., 191: 87–118.

    Article  CAS  Google Scholar 

  • Ichinose, H., Kojima, K., Togari, A., Kato, Y., Parvez, S., Parvez, H., and Nagatsu, T., 1985, Simple purification of aromatic L-amino acid decarboxylase from human pheochromocytoma using high-performance liquid chromatography, Anal. Biochem., 150: 408–414.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C.B., 1986, Aromatic L-amino acid decarboxylation in the rat brain: immunocytochemical localization during prenatal development, Neuroscience, 18: 121–150.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C.B., Albert, V.R., Joh, T.H., and Reis, D.J., 1983a, Aromatic L-amino acid decarboxylase in the rat brain: coexistence with vasopressin in small neurons of the suprachiasmatic nucleus, Brain Res., 276: 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C.B., Ruggiero, D.A., Albert, V.R., Park, D.H., Joh, T.H., and Reis, D.J., 1984, Aromatic L-amino acid decarboxylase in the rat brain: immunocytochemical localization in neurons of the rat brain stem, Neuroscience, 11: 691–713.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C.B., Titelman, G., Joh, T.H., Albert, V.R., Park, D.H., and Reis, D.J., 1983b, Some neurons of the rat central nervous system contain aromatic L-amino acid decarboxylase but not monoamines, Science, 219: 1233–1235.

    Article  PubMed  CAS  Google Scholar 

  • Kitahama, K., Denoyer, M., Raynaud, B., Borri-Voltattorni, C., Weber, M., and Jouvet, M., 1988, Immunohistochemistry of aromatic L-amino acid decarboxylase in the cat forebrain, J. Comp. Neurol., 270: 337–353.

    Article  PubMed  CAS  Google Scholar 

  • Kuntzman, R., Shore, P.A., Bogdanski, D., and Brodie, B.B., 1961, Microanalytical procedures for fluorometric assay of brain DOPA-5HTP decarboxylase, norepinephrine and serotonin, and detailed mapping of decarboxylase activity in brain, J. Neurochem., 6: 226–232.

    Article  CAS  Google Scholar 

  • Lamprecht, F., and Coyle, J.T., 1972, Dopa decarboxylase in the developing rat brain, Brain Res., 41: 503–506.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, G.A., and Sourkes, T.L., 1972, Purification and properties of hog kidney 3,4-dihydroxyphenylalanine decarboxylase, Can. J. Biochem., 50: 791–797.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, K.G., and Hornykiewicz, O., 1972, Occurrence and distribution of aromatic L-amino acid (L-DOPA) decarboxylase in the human brain, J. Neurochem., 19: 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  • Mackowiak, E.D., Hare, T.A., and Vogel, W.H., 1972, Measurements of aromatic L-amino acid decarboxylase — a technical comment, Biochem. Med., 6: 562567.

    Article  Google Scholar 

  • Nagatsu, I., Sakai, M., Yoshida, M., and Nagatsu, T., 1988, Aromatic L-amino acid decarboxylase-immunore active neurons in and around the cerebrospinal fluid-contacting neurons of the central canal do not contain dopamine or serotonin in the mouse and rat spinal cord, Brain Res., 475: 91–120.

    Article  PubMed  CAS  Google Scholar 

  • Nishigaki, I., Ichinose, H., Tamai, K., and Nagatsu, T., 1988, Purification of aromatic L-amino acid decarboxylase from bovine brain with monoclonal antibody, Biochem. J., 252: 331–335.

    PubMed  CAS  Google Scholar 

  • Rahman, K., Nagatsu, T., and Kato, T., 1981, Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with L-dopa and L-5-hydroxytryptophan as substrates, Biochem. Pharmacol., 30: 645–649.

    Article  PubMed  CAS  Google Scholar 

  • Schayer, R.W., 1957, Histidine decarboxylase of rat stomach and other mammalian tissues, Am. J. Physiol., 189: 533–536.

    PubMed  CAS  Google Scholar 

  • Shirota, K., and Fujisawa, H., 1988, Purification and characterization of aromatic L-amino acid decarboxylase from rat kidney and monoclonal antibody to the enzyme, J. Neurochem., 51: 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Sims, K.L., 1974, Biochemical characteristics of mammalian brain 5-hydroxytryptophan decarboxylase activity, Adv. Biochem. Psychopharmacol., 11: 43–50.

    PubMed  CAS  Google Scholar 

  • Sims, K.L., Davis, G.A., and Bloom, F.E., 1973, Activities of 3,4-dihydroxy-L-phenylalanine and 5-hydroxy-L-tryptophan decarboxylases in rat brain: assay characteristics and distribution, J. Neurochem., 20: 449–464.

    Article  PubMed  CAS  Google Scholar 

  • Siow, Y.L., Dakshinamurti, K., 1985, Effect of pyridoxine deficiency on aromatic L-amino acid decarboxylase in adult rat brain, Exp. Brain Res., 59: 575–581.

    Article  PubMed  CAS  Google Scholar 

  • Sourkes, T.L., 1977, Structure and function of monoamine enzymes, in: “Enzymology of Aromatic Amino Acid Decarboxylase”, Usdin, E., Weiner, N., and Youdim, M.B.H., eds., Marcel Dekker, New York, pp. 477–496.

    Google Scholar 

  • Sourkes, T.L., 1987, Aromatic L-amino acid decarboxylase, in: “Methods in Enzymolology”, Vol. 142, Kaufman, S., ed., Academic Press, New York, pp. 170–178.

    Google Scholar 

  • Srinivasan, K., and Awapara, J., 1978, Substrate specificity and other properties of dopa decarboxylase from guinea pig kidney, Biochim. Biophys. Acta, 526: 597–604.

    PubMed  CAS  Google Scholar 

  • Tran, V.T., and Snyder, S.H., 1981, Histidine decarboxylase, J. Biol. Chem., 256: 680–686.

    PubMed  CAS  Google Scholar 

  • Vogel, W.H., 1969, Non-enzymatic decarboxylation of dihydroxyphenylalanine, Naturwissenschaften, 56: 462.

    Article  PubMed  CAS  Google Scholar 

  • Weissbach, H., Lovenberg, W., and Udenfriend, S., 1961, Characteristics of mammalian histidine decarboxylating enzymes, Biochim. Biophys. Acta, 50: 177–179.

    Article  PubMed  CAS  Google Scholar 

  • Yamabe, H., and Lovenberg, W., 1972, Decarboxylation of 3-,4-dihydroxyphenylalanine by oxyhemoglobin, Biochem. Biophys. Res. Comm., 47: 733–739.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ebadi, M., Simonneaux, V. (1991). Ambivalence on the Multiplicity of Mammalian Aromatic L-Amino Acid Decarboxylase. In: Schwarcz, R., Young, S.N., Brown, R.R. (eds) Kynurenine and Serotonin Pathways. Advances in Experimental Medicine and Biology, vol 294. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5952-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5952-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5954-8

  • Online ISBN: 978-1-4684-5952-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics