Skip to main content

Mixed Function Oxidase Enzyme Responses to in Vivo and in Vitro Chromate Treatment

  • Chapter
  • 28 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

Chromium (Cr) is an essential nutrient in humans which aids in the metabolism of cholesterol, glucose and fats. The trivalent state (Cr(III)) is essential in trace doses, while Cr(VI) is toxic to mammals in acute and subchronic doses [Langard and Norseth, 1986] and long term exposure has been associated with respiratory cancer [Chiazze and Wolf, 1980; Langard and Norseth, 1975; Mancuso, 1975]. Unusually high rates of lung cancer have been reported in workers in chrome plating, leather tanning, and other Cr related industries [Chiazze and Wolf, 1980; Langard and Norseth, 1975; Mancuso, 1975]. The mechanisms for the toxic and genotoxic effects of Cr are only partially understood. The differences in toxicity of the two most common oxidation states, Cr(VI) and Cr(III), are due to the relative lack of ability of cationic Cr(III) compounds to cross cell membranes, while Cr(VI) as the chromate anion, crosses biological membranes freely [Aaseth et al., 1982; Wiegand et al., 1985]. The intracellular reduction of Cr(VI) has recently been shown to result in both Cr(V) and Cr(III) production, both of which are putative DNA damaging agents [Goodgame et al., 1982; Jennette, 1982]. Compounds such as glutathione (GSH) [Aaseth et al., 1982; Connett and Wetterhahn, 1983], ascorbate [Connett and Wetterhahn, 1983], and hydrogen peroxide [Cupo and Wetterhahn, 1985] participate in the intracellular reduction of Cr(VI). Reduction takes place both in mitochondria [Alexander et al., 1982], and the endoplasmic reticulum [Gruber and Jennette, 1978]. When GSH is the reductant a toxic glutathionyl radical (GS) may be formed [Wetterhahn, 1990, in press]. Cr(III) binds to nucleophiles including some sulfhydryl (SH) containing enzymes, with some resulting enzyme inhibition. Thus the metabolism of Cr(VI) is important for the interaction of Cr with DNA [Tsapakos and Wetterhahn, 1983], with GSH [Wiegand et al., 1985] and with SH groups on other cellular macromolecules. Previous studies with microsomes have indicated that cytochrome P-450 (P-450), an SH containing enzyme, acts as an electron donor in the microsomal reduction of Cr(VI) [Gruber and Jennette, 1978].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaseth, J., Alexander, J., and Norseth, T. (1982). Uptake of 51Cr-chromate by human erythrocytes–a role of glutathione. Acta. Pharmacol. Toxicol. 50, 310–315.

    CAS  Google Scholar 

  • Alexander, J., Aaseth, J., and Norseth, T. (1982). Uptake of chromium by rat liver mitochondria. Toxicology 24, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Chiazze, L., Jr., and Wolf, P.H. (1980). Epidemiology of respiratory cancer and other health effects among workers exposed to chromium. In Proc. Chromates Symposium 80: Focus of a Standard, pp. 110. Industrial Health Foundation, Pittsburgh, Pa.

    Google Scholar 

  • Connett, P. H., and Wetterhahn, K. E. (1983). Metabolism of the carcinogen chromate by cellular constituents. Structure and Bonding 53, 93–125.

    Article  Google Scholar 

  • Cupo, D. Y., and Wetterhahn, K. E. (1985). Modification of chromium (VI)-induced DNA damage by glutathione and cytochrome P-450 in chicken embryo hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 82, 6755–6759.

    Article  CAS  Google Scholar 

  • Gonasun, L. M., Witmer, C. M., Kocsis, J. J., and Snyder, R. (1973). Benzene metabolism in mouse liver microsomes. Toxicol. Appl. Pharmacol. 26, 398–406.

    Article  CAS  PubMed  Google Scholar 

  • Goodgame, D. M. L., Hayman, P. B., and Hathaway, D. E. (1982). Carcinogenic chromium(VI) forms chromium(V) with ribonucleotides but not with deoxyribonucleotides. Polyhedron. 1, 497–499.

    Article  CAS  Google Scholar 

  • Gruber, J.E., and Jennette, K. W. (1978). Metabolism of the carcinogen chromate by rat liver microsomes. Biochem. Biophys. Res. Commun. 82, 700–706.

    Article  CAS  PubMed  Google Scholar 

  • Jennette, K.W. (1982). Microsomal reduction of the carcinogen chromate produces Chromium (V). J. Am. Chem. Soc. 104, 874–875.

    Article  CAS  Google Scholar 

  • Langard, S., and Norseth, T. (1975). A cohort study of bronchial carcinomas in workers producing chrome pigments. Br. J. Ind. Med. 32, 62–65.

    CAS  PubMed  Google Scholar 

  • Langard, S., and Norseth, T. (1986). Chromium. In Handbook on the Toxicology of Metals, Vol. II ( L. Friberg, G. F. Nordberg, and V. B. Vouk, Eds.), pp. 185–210. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Layne, E. (1957). Spectrophotometric and turbidimetric methods for measuring proteins. In Methods In Enzymology, Vol. III ( S. P. Colowick and N. O. Kaplan, Eds.), pp. 447–454. Academic Press, New York.

    Chapter  Google Scholar 

  • Lowry, O. H., Rosebrough, J. N., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Mancuso, T.F. (1975). Consideration of chromium as an industrial carcinogen. In Proceedings of the International Conference on Heavy Metals in the Environment ( T.C. Hutchinson, Ed.), pp. 343–356. Toronto Institute for Environmental Studies, Toronto, Canada.

    Google Scholar 

  • Phillips, A. H., and Langdon, R. G. (1962). Hepatic Triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization and kinetic studies. J. Biol. Chem., 237, 2652–2660.

    CAS  Google Scholar 

  • Omura, T., and Sato, R. (1964). The carbon monoxide binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem., 239, 2370–2378.

    CAS  PubMed  Google Scholar 

  • Tsapakos, M. J., and Wetterhahn, K. E. (1983). The interaction of chromium with nucleic acids. Chem.-Biol. Interact. 46, 265–277.

    Article  CAS  PubMed  Google Scholar 

  • Wetterhahn, K. (1990). In press.

    Google Scholar 

  • Wiegand, H. J., Ottenwaelder, H., and Bolt, H. J. (1985). Fast uptake kinetics in vitro of 51Cr(VI) by red blood cells of man and rat. Arch. Toxicol. 57, 31–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Faria, E.C., Witmer, C.M. (1991). Mixed Function Oxidase Enzyme Responses to in Vivo and in Vitro Chromate Treatment. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics