Skip to main content

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 38A))

  • 16 Accesses

Abstract

After the L-dopa revolution in the treatment of Parkinson’s disease (for review, see ref.1), there was a decade of consolidation, characterized by small but important variations on this therapeutic theme. However, in 1979, another great leap forward occurred when Davis et al. (2) clearly delineated the beginnings of the MPTP story. The sequence of events is now well known. Following that original publication, there was little interest until the phenomenon was rediscovered by Langston and his colleagues (3) in 1983, and the whole thing caught fire. Thus, a prodrug, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), had been discovered and shown to be neurotoxic only when converted by monoamine oxidase (MAO) B (4) to its quaternary ammonium derivative, 1-methyl-4-phenylpyridinium (MPP+). Administration of MPTP to man (2,3), or monkey (5) but not to rat (6) results in the best simulation of idiopathic Parkinson’s disease that we possess, which responds characteristically to L-dopa (5). The MPTP-treated monkey fails to develop the characteristic nigrostriatal lesions if pretreated with an MAO B inhibitor (7,8), a major signpost for what was to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Sandler, Catecholamine synthesis and metabolism in man (with special reference to parkinsonism), in: “Handbook of Experimental Pharmacology Vol. 33, Catecholamines”, H. Blaschko and E. Muscholl, eds., Springer, Berlin (1972).

    Google Scholar 

  2. G.C. Davis, A.C. Williams, S.P. Markey, M.H. Ebert, E.D. Caine, C. Reichert, M. Kopin, Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat. Res., 1: 249–54 (1979).

    Article  CAS  Google Scholar 

  3. J.W. Langston, P.A. Ballard, J.W. Tetrud, I. Irwin, Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219: 979–980 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. K. Chiba, A. Trevor, N. Castagnoli Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem.Biophys. Res.Commun., 120: 574–578 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. R.S. Burns, C.C. Chiueh, S.P. Markey, M.H. Ebert, D.M. Jacobowitz, I.J. Kopin, A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,6-tetrahydropyridine. Proc.Nat.Acad.Sci. USA, 80: 4546–4550 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. C.C. Chiueh, S.P. Markey, R.S. Burns, J. Johannessen, A. Pert, I.J. Kopin, Neurochemical and behavioral effects of systemic and intranigral administration of N-methyl-4-phenyl-1,2,3,6tetrahydropyridine in the rat. Eur.J.Pharmacol., 100: 189–194 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. J.W. Langston, I. Irwin, E.B. Langston, L.S. Forno, Pargyline prevents MPTP-induced parkinsonism in primates. Science, 225: 1480–1482 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. G. Cohen, P. Pasik, B. Cohen, A. Leist, C. Mytilineou, M.D. Yahr, Pargyline and deprenyl prevent the neurotoxicity of 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur.J.Pharmacol, 106: 209–210 (1985).

    Article  Google Scholar 

  9. C.D. Ward, R.C. Duvoisin, S.E. Ince, J.D. Nutt, R. Eldridge, D.B. Calne, Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology, 33: 815–824 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. R.C. Duvoisin, The cause of Parkinson’s disease, in: “Movement Disorders”, C.D. Marsden, S. Fahn, eds., Butterworth, London (1982).

    Google Scholar 

  11. K.B. Ebmeier, W.J. Mutch, S.A. Calder, J.R. Crawford, L. Stewart, J.O.A. Besson, Does idiopathic Parkinsonism in Aberdeen follow intrauterine influenza? J.Neurol.Neurosurg.Psychiat. 52: 911–913 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. C.H. Mattock, M. Marmot, G. Stern, Could Parkinson’s disease follow intra-uterine influenza?: A speculative hypothesis. J.Neurol. Neurosurg.Psychiat. 51: 753–756 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. M. Bleecker, Parkinsonism: a clinical marker of exposure to neurotoxins. Neurotoxicol.Teratol. 10: 475–478 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. C.D. Marsden and M. Sandler, The MPTP story: an introduction. J.Neural.Transm. Supp1. 20: 1–3 (1986).

    CAS  Google Scholar 

  15. J. Parkinson, An Essay on the Shaking Palsy, Sherwood, Neely and Jones, London (1817).

    Google Scholar 

  16. G. Stern, Did Parkinsonism occur before 1817? J.Neurol.Neurosurg. Psychiat. Special Supplement, 11–12 (1989).

    Google Scholar 

  17. C.M. Tanner, B. Chen, W. Wang, M. Peng, Z. Liu, X. Liang, L.C. Kao, D.W. Gilley, C.G. Goetz, B.S. Schoenberg, Environmental factors and Parkinson’s disease: A case-control study in China. Neurology, 39: 660–664 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. B.S. Schoenberg, Environment risk factors for Parkinson’s disease: the epidemiologic evidence. Can.J.Neurol.Sci., 14: 407–413 (1987).

    PubMed  CAS  Google Scholar 

  19. C. Gibb, J. Willoughby, V. Glover, M. Sandler, B. Testa, P. Jenner, C.D. Marsden, Analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as monoamine oxidase substrates: a second ring is not necessary. Neurosci.Lett., 76: 316–322 (1987).

    Article  PubMed  Google Scholar 

  20. S.K. Youngster, P.K. Sonsalla, B.A. Sieber, R.E. Heikkila, Structure-activity study of the mechanism of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP)-induced neurotoxicity. I. Evaluation of the biological activity of MPTP analogs. J.Pharmacol.Exp.Ther., 249: 820–828 (1989).

    PubMed  CAS  Google Scholar 

  21. S.K. Youngster, W.J. Nicklas, R.E. Heikkila, Structure-activity study of the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. II. Evaluation of the biological activity of the pyridinium metabolites formed from the monoamine oxidase-catalyzed oxidation of MPTP analogs. J.Pharmacol.Exp.Ther., 249: 829–835 (1989).

    PubMed  CAS  Google Scholar 

  22. R.E. Heikkila, M.V. Kindt, P.K. Sonsalla, A. Giovanni, S.K. Youngster, K.A. McKeown and T.P. Singer, Importance of monoamine oxidase A in the bioactivation of neurotoxic analogs of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine. Proc.Nat.Acad.Sci. USA, 85: 6172–6176 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. V. Glover, M. Sandler, F. Owen, C.J. Riley, Dopamine is a monoamine oxidase B substrate in man. Nature, 265: 80–81 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. P.C. Waldmeier, A. Delini-Stula, L. Maître, Preferential deamination of dopamine by an A type monoamine oxidase in rat brain. NaunynSchmiedeberg’s Arch.Pharmac., 292: 9–14 (1976).

    Article  CAS  Google Scholar 

  25. J.I. Sage, Tomatoes and Parkinson’s disease. Medical Hypotheses, 28: 75–79 (1988).

    Article  Google Scholar 

  26. K. Sakurai, K. Takahashi and T. Yoshida, Pyridine derivatives in peppermint oil. Agric.Biol.Chem., 47: 2307–2312 (1983).

    Article  CAS  Google Scholar 

  27. O.G. Vitzthum, P. Werhoff and P. Hubert, Volatile components of roasted cocoa: basic fraction. J.Food Sci., 40: 911–916 (1975).

    Article  CAS  Google Scholar 

  28. O.G. Vitzthum, P. Werkhoff and P. Hubert (1975), New volatile constituents of black tea aroma. J.Agric.Food Chem., 23: 999–1003 (1975).

    Google Scholar 

  29. T.L. Perry, K. Jones, S. Hansen and R.A. Wall, 2-Phenylpyridine and 3-phenylpyridine, constituents of tea, are unlikely to cause idiopathic Parkinson’s disease. J.Neurol.Sci., 85: 309–317 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. J.W. Langston and I. Irwin, Pyridine toxins, in: “Drugs for the Treatment of Parkinson’s disease”, D.B. Caine, ed., Springer, Berlin. (1989).

    Google Scholar 

  31. J.F. Reinhard, E.J. Diliberto Jr., O.H. Viveros and A.J. Daniels, Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells. Proc.Nat.Acad. Sci. USA, 84: 8160–8164 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. S.P. Wilson and J.F. Beeler, Catecholamine depletion and accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+) in adrenal medullary chromaffin cells. Neurochem.Int. 13: 333–343 (1988).

    Article  PubMed  Google Scholar 

  33. J.F. Reinhard Jr., E.J. Diliberto Jr., and A.J. Daniels, Characterization of cellular transport, subcellular distribution, and secretion of the neurotoxicant 1-methyl-4-phenylpyridinium in bovine adrenomedullary cell cultures. J.Neurochem., 52: 1253–1259 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. F. Darchen, D. Scherman, C. Desnos and J-P. Henry, Characteristics of the transport of the quaternary ammonium 1-methyl-4-phenylpyridinium by chromaffin granules. Biochem.Pharmacol., 37: 4381–4387 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. J.W. Langston, Current theories on the cause of Parkinson’s disease. J.Neurol.Neurosurg.Psychiat., Special supplement, 13–17 (1989).

    Google Scholar 

  36. J. Willoughby, R.F. Cowburn, J.A. Hardy, V. Glover and M. Sandler, 1-Methyl-4-phenylpyridinium uptake by human and rat striatal synaptosomes. J.Neurochem., 52: 627–631 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. A.H.V. Schapira, J.M. Cooper, D. Dexter, P. Jenner, J.B. Clark, C.D. Marsden, Mitochondrial complex I deficiency in Parkinson’s disease. Lancet, i: 1269 (1989).

    Google Scholar 

  38. M. Sandler, The role of minor pathways of dopa metabolism, in: “L-Dopa and Parkinsonism”, A. Barbeau and F.H. McDowell, eds., Davis, Philadelphia (1970).

    Google Scholar 

  39. M. Sandler, Biokhimicheskie osnov’y bolyezny Parkinsona y lyechenye yiyo L-dopa (The biochemical basis of Parkinson’s disease and its treatment with L-dopa). Zh. Vcyesoyuz Khim.Obshch., 21: 190–196 (1976).

    CAS  Google Scholar 

  40. H. Saggu, J. Cooksey, D. Dexter, F.R. Wells, A. Lees, P. Jenner and C.D. Marsden, A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J.Neurochem., 53: 692–697 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. J. Knoll, The striatal dopamine dependency of life span in male rats. Longevity study with (-)deprenyl. Mech.Ageing Devel., 46: 237–262 (1988).

    Article  CAS  Google Scholar 

  42. W. Birkmayer, J. Knoll, P. Riederer, M.D. Youdim, V. Mars, J. Marton, Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease: a long-term study. J.Neural Transm., 64: 113–127 (1985).

    Article  PubMed  CAS  Google Scholar 

  43. J.W. Tetrud and J.W. Langston, The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science, 245: 519–522. (1989).

    Article  PubMed  CAS  Google Scholar 

  44. I. Shoulson, Experimental therapeutics directed at the pathogenesis of Parkinson’s disease, in: “Drugs for the treatment of Parkinson’s disease”, D.B. Caine, ed., Springer, Berlin (1989).

    Google Scholar 

  45. L.I. Golbe, T.M. Farrell, P.H. Davis, Case-control study of early life dietary factors in Parkinson’s disease. Arch.Neurol., 45: 1350–1353 (1988).

    Article  PubMed  CAS  Google Scholar 

  46. J. Knoll, J. Dallo and T.T. Yen, Striatal dopamine, sexual activity and lifespan. Longevity of rats treated with (-)deprenyl. Life Sci., 45: 525–531 (1989).

    Article  PubMed  CAS  Google Scholar 

  47. W. Schultz, E. Scarnati, E. Sundström and R. Romo, Protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism by the catecholamine uptake inhibitor nomifensine: behavioral analysis in monkeys with partial striatal dopamine depletions. Neuroscience, 31: 219–230 (1989).

    Article  PubMed  CAS  Google Scholar 

  48. Hornykiewicz, Ageing and neurotoxins as causative factors in idiopathic Parkinson’s disease - a critical analysis of the neuro-chemical evidence. Neuro-Psychopharmacol.Biol.Psychiat., 13: 319–328 (1989).

    Article  Google Scholar 

  49. T. Niwa, Takeda, N., Kaneda, N., Hashizume, Y. and T. Nagatsu, Presence of tetrahydroisoquinoline and 2-methyltetrahydroquinoline in parkinsonian and normal human brains. Biochem.Biophys.Res.Commun., 144: 1084–1089 (1987).

    Article  PubMed  CAS  Google Scholar 

  50. T. Niwa, N. Takeda, T. Sasaoka, N. Kaneda, Y. Hashizume, H. Yoshizumi, A. Tatematsu and T. Nagatsu, Detection of tetrahydroisoquinoline in parkinsonian brain as an endogenous amine by use of gas chromatography-mass spectrometry. J.Chromatogr., 491: 37–403 (1989).

    Article  Google Scholar 

  51. M. Naoi, S. Matsuura, T. Takahashi and T. Nagatsu, A N-methyltransferase in human brain catalyses N-methylation of 1,2,3,4tetrahydroisoquinoline into N-methyl-1,2,3,4-tetrahydroisoquinoline, a precursor of a dopaminergic neurotoxin, N-methylisoquinolinium ion. Biochem.Biophys.Res.Commun., 161: 1213–1219 (1989).

    Article  PubMed  CAS  Google Scholar 

  52. R.G. Booth, N. Castagnoli Jr., and H. Rollema, Intracerebral microdialysis neurotoxicity studies of quinoline and isoquinoline derivatives related to MPTP/MPP+. Neurosci.Lett., 100: 306–312 (1989).

    Article  PubMed  CAS  Google Scholar 

  53. T. Nagatsu and M. Yoshida, An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase, and biopterin in the nigrostriatal regions. Neurosci.Lett., 87: 178–182 (1988).

    Article  PubMed  CAS  Google Scholar 

  54. K. Suzuki, Y. Mizuno and M. Yoshida, Selective inhibition of complex I of the brain electron transport system by tetrahydroisoquinoline. Biochem.Biophys.Res.Commun., 162: 1541–1545 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. M. Sandler, (-)-Deprenyl in perspective: prophylaxis for Parkinson’s disease? J.Neural.Transm., Suppl 22: 107–115 (1986).

    Google Scholar 

  56. G.B. Steventon, M.T.E. Heafield, R.H. Waring and A.C. Williams, Xenobiotic metabolism in Parkinson’s disease. Neurology, 39: 883–887 (1989).

    Article  PubMed  CAS  Google Scholar 

  57. R.H. Waring, G.B. Steventon, S.G. Sturman, M.T.E. Heafield, M.C.G. Smith, A.C. Williams, S-Methylation in motorneuron disease and Parkinson’s disease. Lancet, ii: 356–357 (1989).

    Google Scholar 

  58. R.A. Weisinger, L.M. Pinkus, W.B. Jakoby, Thiol S-methyltransferase: suggested role in detoxication of intestinal hydrogen sulfide. Biochem.Pharmacol. 29: 2885–2887 (1980).

    Article  Google Scholar 

  59. U.B. Gaitonde, R.J. Sellar, A.E. O’Hare, Long-term exposure to hydrogen sulphide producing subacute encephalopathy in a child. Br.Med.J. 294: 614 (1987).

    Article  CAS  Google Scholar 

  60. D.B. Caine, J.W. Langston, W.R.W. Martin, T.J. Ruth, M.J. Adam, B.D. Pate and M. Schulzer, Positron emission tomography after MPTP: observations relating to the cause of Parkinson’s disease. Nature, 317: 246–248 (1985).

    Article  Google Scholar 

  61. M. Guttman, V.W. Yong, S.U. Kim, D.B. Caine, W.R.W. Martin, M.J. Adam and T.J. Ruth, Asymptomatic striatal dopamine depletion: PET scans in unilateral MPTP monkeys. Synapse, 2: 469–473 (1988).

    Article  PubMed  CAS  Google Scholar 

  62. V. Glover, M.A. Reveley, M. Sandler, A monoamine oxidase inhibitor in human urine. Biochem.Pharmac., 29: 467–470 (1980).

    Article  CAS  Google Scholar 

  63. M. Sandler, The emergence of tribulin. Trends Pharmac.Sci., 3: 471–472 (1982).

    Article  CAS  Google Scholar 

  64. V. Glover, S.K. Bhattacharya, M. Sandler, S.E. File, Benzodiazepines reduce stress-augmented increase in rat urine monoamine oxidase inhibitor. Nature, 292: 347–349 (1981).

    Article  PubMed  CAS  Google Scholar 

  65. H. Petursson, M.A. Reveley, V. Glover, M. Sandler, Urinary MAO inhibitor in psychiatric illness. Psychiat.Res., 5: 335–340 (1981).

    Article  CAS  Google Scholar 

  66. H. Petursson, S.K. Bhattacharya, V. Glover, M. Sandler, M.H. Lader, Urinary monoamine oxidase inhibitor and benzodiazepine withdrawal. Br.J.Psychiat., 140: 7–10 (1982).

    Article  CAS  Google Scholar 

  67. I. Armando, V. Glover, M. Sandler, Distribution of endogenous benzodiazepine receptor ligand-monoamine oxidase inhibitory activity (tribulin) in tissues. Life Sci., 38: 2063–2067 (1986).

    Article  PubMed  CAS  Google Scholar 

  68. V. Glover, A. Clow, G.F. Oxenkrug and M. Sandler, Effect of stress on the inhibition of rat brain monoamine oxidase (MAO) A and B by phenelzine. Pharmac.Res.Commun., Supp1. 4, 20: 139–140 (1988).

    Google Scholar 

  69. V. Glover, M. Sandler, Tribulin and Stress: Clinical studies on a new neurochemical system, in: “Neurobiological Aspects of Panic Disorder” J. Ballenger, ed., Alan R. Liss, New York, in press.

    Google Scholar 

  70. V. Glover, J.M. Halket, P.J. Watkins, A. Clow, B.L. Goodwin and M. Sandler, Isatin: identity with the purified endogenous monoamine oxidase inhibitor tribulin. J.Neurochem., 51: 656–659 (1988).

    Article  PubMed  CAS  Google Scholar 

  71. A. Ueki, J. Willoughby, V. Glover, M. Sandler, K. Stibbe and G.M. Stern, Endogenous urinary monoamine oxidase inhibitor excretion in Parkinson’s disease and other neurobiological disorders. J.Neural Transm., in press.

    Google Scholar 

  72. S.L. Walsh, G.C. Wagner, Age-dependent effects of 1-methy1–4phenyl-1,2,3,6-tetrahydropyridine (MPTP): correlation with monoamine oxidase-B. Synapse, 3: 308–314 (1989).

    Article  PubMed  CAS  Google Scholar 

  73. V.W. Yong and T.L. Perry, Monoamine oxidase B, smoking, and Parkinson’s disease. J.Neurol.Sci., 72: 265–272 (1986).

    Article  PubMed  CAS  Google Scholar 

  74. A. Lucas, Nutritional physiology: dietary requirements of term and preterm infants, in: “Textbook of Neonatology”. N.C.R. Robertson, ed., Churchill Livingstone, Edinburgh (1986).

    Google Scholar 

  75. A.L. De Blas and L. Sangameswaran, Demonstration and purification of an endogenous benzodiazepine from the mammalian brain with a monoclonal antibody to benzodiazepines. Life Sci., 39: 1927–1936 (1986).

    Article  PubMed  Google Scholar 

  76. J. Wildmann, W. Vetter, U.B. Ranalder, K. Schmidt, R. Maurer and H. Möhler, Occurrence of pharmacologically active benzodiazepines in trace amounts in wheat and potato. Biochem.Pharmacol., 37: 3549–3559 (1988).

    Article  PubMed  CAS  Google Scholar 

  77. E. Unseld, D.R. Krishna, C. Fischer and U. Klotz, Detection of desmethyldiazepam and diazepam in brain of different species and plants. Biochem.Pharmacol., 38: 2473–2478 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Sandler, M., Glover, V. (1990). Biochemical Studies on Predisposition to Parkinson’s Disease. In: Nagatsu, T., Fisher, A., Yoshida, M. (eds) Basic, Clinical, and Therapeutic Aspects of Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 38A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5844-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5844-2_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5846-6

  • Online ISBN: 978-1-4684-5844-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics