Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 194))

Abstract

Heart tissue has a high oxidative capacity due to its high content of mitochondria. In addition it is known that the oxidative capacity of mitochondria is correlated to their cristal content and heart mitochondria are known to contain many closely packed cristae. Measures of the inner membrane content (surface area) of heart mitochondria have been made by a number of groups of electron microscopists using stereomorphology (see 1 for review). Their data indicate that a rat heart mitochondrion contains about 60 µm2 of inner membrane surface area for each µm3 of mitochondrial volume. I have shown that these figures are consistent with an average spacing of cristae within a heart mitochondrion of about 150 A2. One can calculate a diameter of 60 A for a spherical protein molecule with a molecular weight of about 80,000. Therefore, it is readily seen that a theoretical construct of a heart mitochondrion would place almost all of the matrix proteins next to the inner membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reith, A. Barnard, T., and Rohr, H.-P. Stereology of Cellular Reaction Patterns, CRC Critical Reviews in Toxicology, 4: 219–269 (1976).

    PubMed  CAS  Google Scholar 

  2. Srere, P. A. The Structure of the Mitochondrial Inner Membrane-Matrix Compartment, Trends Biochem. Sci., 7: 375–378 (1982).

    Article  CAS  Google Scholar 

  3. Srere, P. A. The Infrastructure of the Mitochondrial Matrix, Trends Biochem. Sci., 5: 120–121 (1980).

    Article  CAS  Google Scholar 

  4. Hackenbrock, C. R. Chemical and Physical Fixation of Isolated Mitochodnria in Low-Energy and High-Energy States, Proc. Natl. Acad. Sci. 61: 598–605 (1968).

    Article  PubMed  CAS  Google Scholar 

  5. Minton, A. P. Excluded Volume as a Determinant of Macro- molecular Structure and Reactivity, Biopolymers, 20: 2093–2120 (1981).

    Article  CAS  Google Scholar 

  6. Minton, A. P. and Wilf, J. Effect of Macromolecular Crowding upon the Structure and Function of an Enzyme: Glyceraldehyde-3-phosphate Dehydrogenase, Biochemistry, 20: 4821–4826 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. Zimmerman, S. B. and Pheiffer, B. H. Macromolecular Crowding Allows Blunt-end Ligation by DNA Ligases from Rat Liver or Escherichia coli, Proc. Natl. Acad. Sci. USA, 80: 5852–5856 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. Srere, P. A. Protein Crystals as a Model for Mitochondrial Matrix Proteins, Trends Biochem. Sci., 6: 4–6 (1981).

    Article  CAS  Google Scholar 

  9. Bishop, W. H. and Richards, F. M. Properties of Liquids in Small Pores, J. Mol. Biol. 38: 315–328 (1968).

    Article  CAS  Google Scholar 

  10. Fritz, I. B. “Cellular Compartmentalization and Control of Fatty Acid Metabolism”, Academic Press, New York (1968).

    Google Scholar 

  11. Schoolwerth, A. C. and Lalloue, K. F. The Role of Micro- compartmentation in the Regulation of Glutamate Metabolism by Rat Kidney Mitochondria, J. Biol. Chem. 255: 3403–3411 (1980).

    PubMed  CAS  Google Scholar 

  12. Loeb, J. “The Organism as a Whole from a Physicochemical Viewpoint”, Knickerbocker Press, New York (1916).

    Book  Google Scholar 

  13. Srere, P. A. and Mosbach, K. Metabolic Compartmentation: Symbiotic, Organnelar, Multienzymic, and Microenvironmental. Ann. Rev. Microbiol. 28: 61–83 (1974).

    Article  CAS  Google Scholar 

  14. Welch, G. On the Role of Organized Multienzyme Systems in Cellular Metabolism: A General Synthesis, Prog. Biophys. Molec. Biol. 32: 103–191 (1977).

    Article  CAS  Google Scholar 

  15. Srere, P. A. and Estabrook, R. “Editors of Microenvironments and Metabolic Compartmentation”, Academic Press, New York (1978).

    Google Scholar 

  16. Srere, P. A., Mattfasson, B., and Mosbach, K. An Immobilized Three-Enzyme System: A Model for Microenvironmental Compartmentation in Mitochondria. Proc. Natl. Acad. Sci. USA 70: 2534–2538 (1973).

    Article  PubMed  CAS  Google Scholar 

  17. Halper, L. A. and Srere, P. A. Interaction between Citrate Synthase and Mitochondrial Malate Dehydrogenase in the Presence of Polyethylene Glycol. Arch. Biochem. Biophys. 184: 529–534.

    Google Scholar 

  18. Fahien, L. A. and Kmiotek, E. Complexes between Mitochondrial Enzymes and Either Citrate Synthase or Glutamate Dehydrogenase, J. Biol. Chem. 254: 5983–5990 (1979).

    PubMed  CAS  Google Scholar 

  19. Koch-Schmidt, A., Mattiasson, B., and Mosbach, K. Aspects on Microenvironmental Compartmentation, Eur. J. Biochem. 81: 71–78 (1977).

    Article  PubMed  CAS  Google Scholar 

  20. Beeckmans, S. and Kanarek, L. Demonstration of Physical Interactions between Consecutive Enzymes of the Citric Acid Cycle and of the Aspartate-Malate Shuttle, Eur. J. Biochem. 117: 527–535 (1981).

    Article  PubMed  CAS  Google Scholar 

  21. Sumegi, B., Gyocsi, L., and Alkonyi, I. Interaction between the Pyruvate Dehydrogenase Complex and Citrate Synthase, Biochim. Biophys. Acta 616: 158–166.

    Google Scholar 

  22. Sumegi, B. and Alkonyi, I. A Study on the Physical Interaction between the Pyruvate Dehydrogenase Complex and Citrate Synthase, Biochim. Biophys. Acta 749: 163–171 (1983).

    Article  PubMed  CAS  Google Scholar 

  23. Porpaczy, Z., Sumegi, B., and Alkonyi, I. Association between the a-Ketoglutarate Dehydrogenase Complex and Succinate Thiokinase, Biochim. Biophys. Acta 749: 172–179 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. Chapman, M. F., Miller, L. R., and Ontko, J. A. Localization of the Enzymes of Ketogenesis in Rat Liver Mitochondria, J. Cell. Biol. 58: 284–306 (1973).

    Article  PubMed  CAS  Google Scholar 

  25. Brdiczka, D., Pette, D., Brunner, G., and Miller F. Kompartimentierte Verteilung von Enzymen in Rattenlebermitochondrien, Eur. J. Biochem. 5: 294–304 (1968).

    Article  PubMed  CAS  Google Scholar 

  26. Haddock, B. A., Yates, D. W., and Garland, P. B. The Localization of Some Coenzyme A-Dependent Enzymes in Rat Liver Mitochondria, Biochem. J. 119: 565–573 (1970).

    PubMed  CAS  Google Scholar 

  27. Landriscina, C., Papa, S., Coratelli, P., Mazzarella, L., and Quagliariello, E. Enzymatic Activities of the Matrix and Inner Membrane of Pigeon-Liver Mitochondria, Biochim. Biophys. Acta 205: 136–141 (1970).

    Article  PubMed  CAS  Google Scholar 

  28. Allmann, D. W., Galzigna, L., McCaman, R. E., and Green, D.E. The Membrane Systems of the Mitochondrion, Arch. Biochem. Biophys. 117: 413–419 (1966).

    Article  PubMed  CAS  Google Scholar 

  29. Wit-Peeters, E. M., Scholte, H. R., Van Den Akker, F., and DeNie, I. Intramitochondrial Localization of Palmityl-CoA Dehydrogenase, ß-Hydroxyacyl-CoA Dehydrogenase and EnoylCoA Hydratase in Guinea-Pig Heart, Biochim. Biophys. Acta 231: 23–31 (1971).

    PubMed  CAS  Google Scholar 

  30. Beattie, D. S. The Submitochondrial Distribution of the Fatty Acid Oxidizing System in Rat Liver Mitochondria, Biochem. Biophys. Res. Commun. 30: 57–62 (1968).

    Article  CAS  Google Scholar 

  31. Blank, M. L., Cress, E. A., Stephens, N., and Snyder, F. On the Analysis of Long Chain Alkane Diols and Glycerol Ethers in Biochemical Studies, J. Lipid Res. 12: 638–640 (1971).

    PubMed  CAS  Google Scholar 

  32. Davidoff, F. and Korn, E. D. The Reactions of trans-a, ß-Hexadecenoyl Coenzyme A and cis-and trans-ß, Y-Hexadecenoyl Coenzyme A Catalyzed by Enzymes from Guinea Pig Liver Mitochondria, J. Biol. Chem. 240: 1549–1558 (1965).

    PubMed  CAS  Google Scholar 

  33. Fleming, P. J. and Hajra, A. K. Biosynthesis and Characterization of a Phosphatidic Acid Analog Containing ß-Hydroxy Fatty Acid, Biochem. Biophys. Res. Commun. 55: 743–751.

    Google Scholar 

  34. Garland, P. B., Shepherd, D., and Yates, D. W. Steady-State Concentrations of Coenzyme A, Acetyl-Coenzyme A and Long-Chain Fatty Acyl-Coenzyme A in Rat-Liver Mitochondria Oxidizing Palmitate, Biochem. J. 97: 587–594 (1965).

    PubMed  CAS  Google Scholar 

  35. Rabinowitz, J. L. and Hercker, E. S. Incomplete Oxidation of Palmitate and Leakage of Intermediary Products during Anoxia, Arch. Biochem. Biophys. 161: 621–627 (1974).

    Article  PubMed  CAS  Google Scholar 

  36. Stanley, K. K. and Tubbs, P. K. The Role of Intermediates in Mitochondrial Fatty Acid Oxidation, Biochem. J. 150: 77–88 (1975).

    PubMed  CAS  Google Scholar 

  37. Olowe, Y. and Schulz, H. Regulation of Thiolases from Pig Heart–Control of Fatty Acid Oxidation in Heart, Eur. J. Biochem. 109: 425–429 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Srere, P.A., Sumegi, B. (1986). Organization of the Mitochondrial Matrix. In: Brautbar, N. (eds) Myocardial and Skeletal Muscle Bioenergetics. Advances in Experimental Medicine and Biology, vol 194. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5107-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5107-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5109-2

  • Online ISBN: 978-1-4684-5107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics