Skip to main content

ATP as a Factor in the Response of the cAMP System to PTH in Proximal and Distal Convoluted Tubules

  • Chapter
Phosphate and Mineral Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 178))

  • 72 Accesses

Abstract

Since the discovery of cyclic 3′ ,5′-AMP (cAMP) as an intra-cellular mediator in hormone-responsive tissues by E. W. Sutherland (1), it was well recognized that ATP serves as a substrate for the key enzyme of cAMP metabolism—adenylate cyclase (AdC). Later it was also found that ATP may modulate cAMP catabolism by inhibiting cAMP-phosphodiesterase (cAMP-PDIE) (2). However, in recent years little attention was paid to cellular levels of ATP as a potential determinant of hormone-sensitive cAMP metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. W. Sutherland, On the biological role of cyclic AMP, JAMA 214: 1281 (1970).

    Article  PubMed  Google Scholar 

  2. T. P. Dousa, Cyclic nucleotides in renal pathophysiology, in: “Hormonal Function and the Kidney,” B. Brenner and J. Stein, ed., Churchill Livingstone, New York (1979).

    Google Scholar 

  3. F. Morel, Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240: F159 (1981).

    PubMed  CAS  Google Scholar 

  4. B. A. Jackson, R. M. Edwards, H. Valtin, and T. P. Dousa, Cellular action of vasopressin in medullary tubules of mice with hereditary nephrogenic diabetes insipidus, J. Clin. Invest. 66: 110 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. R. M. Edwards, B. A. Jackson, and T. P. Dousa, ADH-sensitive cAMP system in papillary collecting duct: Effect of osmolality and PGE2, Am. J. Physiol. 240: F311 (1981).

    PubMed  CAS  Google Scholar 

  6. T. P. Dousa, B. A. Jackson, and R. M. Edwards. Cellular action of vasopressin in medullary collecting tubules and in ascending limbs of Henle’s loop, in: “Antidiuretic Hormone,” S. Yoshida, L. Share, and K. Yagi, ed., Japan Scientific Societies Press, Tokyo (1980).

    Google Scholar 

  7. F. Morel, D. Chabardes, and M. Imbert-Teboul, Methodology for enzymatic studies of isolated tubular segments: Adenylate cyclase, in: “Methods in Pharmacology: Renal Pharmacology,” M. Martinez-Maldonado, ed., Plenum Press, New York (1976).

    Google Scholar 

  8. J. J. LeMasters, and C. R. Hackenbrock, Firefly luciferase assay for ATP production by mitochondria, in: “Methods in Enzymology,” M. A. DeLuca, ed., Academic Press, New York (1978).

    Google Scholar 

  9. G. M. Kiebzak, A. N. K. Yusufi, E. Kusano, J. Werness, and T. P. Dousa, Low ATP levels in the proximal convoluted tubule of the mouse nephron, Fed. Proc. 42: 1259 (1983).

    Google Scholar 

  10. M. G. Brunette, D. Chabardes, M. Imbert-Teboul, A. Clique, M. Montegut, and F. Morel, Hormone-sensitive adenylate cyclase along the nephron of genetically hypophosphatemic mice, Kidney Int. 15: 357 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. S. R. Gullans, P. C. Brazy, S. P. Soltoff, V. W. Dennis, and L. J. Mandel, Metabolic inhibitors: Effects on metabolism and transport in the proximal tubule, Am. J. Physiol. 243: F133 (1982).

    PubMed  CAS  Google Scholar 

  12. M. K. Drezner, and W. M. Burch, Altered activity of the nucleotide regulatory site in the parathyroid hormone-sensitive adenylate cyclase from the renal cortex of a patient with pseudohypoparathyroidism, J. Clin. Invest. 62: 1222 (1978).

    Article  PubMed  CAS  Google Scholar 

  13. W. G. Guder, and A. Rupprecht, Hormonal regulation of gluconeogenesis in isolated rat kidney tubule fragments, in: “Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies,” J. M. Tager, H. D. Soling, and J. R. Williamson, ed., North-Holland Publishing Company, Amsterdam, (1976).

    Google Scholar 

  14. H. B. Burch, S. Choi, C. N. Dence, T. R. Alvey, B. R. Cole, and O. H. Lowry, Metabolic effects of large fructose loads in different parts of the rat nephron, J. Biol. Chem. 255: 8239 (1980).

    PubMed  CAS  Google Scholar 

  15. C. Amiel, D. Chabardes, and C. Bailly. Effects of parathyroid hormone on the kidney: Sites and mechanisms of action, in: “Advances in Nephrology,” J. Hamburger, J. Crosnier, J. Greenfield, and M. Maxwell, ed., Year Book Medical Publishers, Inc., Chicago, (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Dousa, T.P., Kiebzak, G.M., Yusufi, A.N.K., Kusano, E., Braun-Werness, J. (1984). ATP as a Factor in the Response of the cAMP System to PTH in Proximal and Distal Convoluted Tubules. In: Massry, S.G., Maschio, G., Ritz, E. (eds) Phosphate and Mineral Metabolism. Advances in Experimental Medicine and Biology, vol 178. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4808-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4808-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4810-8

  • Online ISBN: 978-1-4684-4808-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics