Skip to main content

A Review of Methods to Prepare Self-Supporting Carbon Targets and of Their Importance in Accelerator Experiments

  • Chapter

Abstract

Carbon occupies a special position compared to all other elements. Without carbon, the basis for life would be impossible. Organic chemistry or carbon chemistry is an independent part of chemistry. Just so the element carbon occupies an exceptional position in target preparation for nuclear measurements due to its melting point, the highest of all elements, the very low vapor pressure and the chemical stability which is comparable to that of the noble metals. Carbon has only two stable isotopes and one radioactive isotope the half-life of which is long enough to prepare targets. The natural abundance of carbon-12 is nearly 99% which means a natural carbon target can be used in most cases as isotopic 12C-target. But this is only one part of the story, the other one is given by the excellent properties of the self-supporting foils. The good tensile strength of an amorphous carbon layer can be estimated by the minimum thickness of a self-supporting foil. Carbon foils can be prepared even below 1 μg/cm2 (≈ 60 Å), they are one order of magnitude thinner than foils of any other element.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. S. Gemmel, E. P. Kanter, and W. J. Pietsch, Chem. Phys. Lett. 55 (1978) 331.

    Article  Google Scholar 

  2. G. E. Myers and G. L. Montet, J. Appl. Phys. 37 (1966) 4195.

    Article  CAS  Google Scholar 

  3. M. Rebak, J. P. F. Sellshop, T. E. Derry, and R. W. Fearick, Nucl. Instr. and Meth. 167. (1979) 115.

    Article  CAS  Google Scholar 

  4. W. R. Lozowski, Proc. 6th Ann. Conf. INTDS, Berkeley (LBL-7950) (1977) 115.

    Google Scholar 

  5. V. E. Viola Jr. and D. J. O’Connell, Nucl. Instr. and Meth. 32 (1965) 125.

    Article  CAS  Google Scholar 

  6. R. D. McCormick and J. D. McCormack, Nucl. Instr. and Meth. 13 (1961) 151.

    Article  Google Scholar 

  7. G. C. Phillips and J. E. Richardson, Rev. Sci. Instr. 21 (1950) 885.

    Article  CAS  Google Scholar 

  8. H. D. Holmgren, J. M. Blair, K. F. Famularo, T. F. Stratton, and R. V. Stuart, Rev. Sci. Instr. 25 (1954) 1026.

    Google Scholar 

  9. E. Kashy, R. R. Perry, and J. R. Risser, Nucl. Instr. and Meth. 4 (1959) 167.

    Article  CAS  Google Scholar 

  10. A. H. F. Muggleton, Proc. Seminar on the Prep, and Standardisation of Isotopic Targets and Foils, Harwell, Oxon ÄERE-R5Q97 (1965) 99.

    Google Scholar 

  11. R. Keller and H. H. Müller, Nucl. Instr. and Meth. 119 (1974) 321.

    Article  CAS  Google Scholar 

  12. H. J. Maier, these Proceedings.

    Google Scholar 

  13. N. R. S. Tait, D. W. L. Tolfree, B. H. Armitage, and D. S. Whitmell, Nucl. Instr. and Meth. 167. (1979) 21.

    Article  CAS  Google Scholar 

  14. H. König and G. Helwig, Zeitschrift für Physik 129 (1951) 491.

    Article  Google Scholar 

  15. H. Baumann and H. L. Wirth, Nucl. Instr. and Meth, 167 (1979) 71.

    Article  CAS  Google Scholar 

  16. G. Sletten and P. Knudsen, Nucl. Instr. and Meth. 102 (1972) 459.

    Article  CAS  Google Scholar 

  17. D. E. Bradley, Brit. J. Appl. Phys. 5 (1954) 65.

    Article  Google Scholar 

  18. G. Dearnaley, Rev. Sci. Instr. 31 (1960) 197.

    Article  CAS  Google Scholar 

  19. N. Sarma, Nucl. Instr. 2 (1958) 361.

    Article  CAS  Google Scholar 

  20. R. D. McCormick and J. D. McCormack, Nucl. Instr. and Meth. 13 (1961) 147.

    Article  Google Scholar 

  21. M. Nobes, J. Sei. Instr. 42 (1965) 753.

    Article  Google Scholar 

  22. P. Maier-Komor, Nucl. Instr. and Meth. 102 (1972) 485.

    Article  CAS  Google Scholar 

  23. I. Pfeiffer, Naturwissenschaften 42 (1955) 508.

    Article  CAS  Google Scholar 

  24. M. D. Blue and G. C. Danielson, J. Appl. Phys. 28 (1957) 583.

    Article  CAS  Google Scholar 

  25. S. Takeuchi, C. Kobayashi, Y. Satoh, T. Yoshida,

    Google Scholar 

  26. E. Takekoshi, and M. Maruyama, Nucl. Instr. and Meth. 158 (1979) 333.

    Article  Google Scholar 

  27. A. Greenville-Whittaker and P. Kinter, Carbon 7 (1969) 414.

    Article  Google Scholar 

  28. S. H. Maxman, Nucl. Instr. and Meth. 50 (1967) 53.

    Article  CAS  Google Scholar 

  29. M. Morgan, Thin Solid Films 7 (1971) 313.

    Article  CAS  Google Scholar 

  30. J. L. Gallant, Proc. 3rd Ann. Conf. of the INTDS, Chalk River, AECL-5503 (1974) 172.

    Google Scholar 

  31. D. N. Braski, Nucl. Instr. and Meth. 102 (1972) 553.

    Article  CAS  Google Scholar 

  32. H. K. Abele, P. Glässel, P. Maier-Komor, H. Rösier, H. J. Scheerer, and H. Vonach, Proc. 4th Ann. Conf. INTDS, Argonne 1975, ANL/PHY/MSD-76–1, p. 117.

    Google Scholar 

  33. H. K. Abele, P. Glässel, P. Maier-Komor, H. J. Scheerer, H. Rösier, and H. Vonach, Nucl. Instr. and Meth. 137 (1976) 157.

    Article  CAS  Google Scholar 

  34. J. L. Yntema, Nucl. Instr. and Meth. 98 (1972) 379.

    Article  CAS  Google Scholar 

  35. P. Dobberstein and L. Henke, Nucl. Instr. and Meth. 119 (1974) 611.

    Article  CAS  Google Scholar 

  36. A. E. Livingston, H. G. Berry, and G. E. Thomas, Nucl. Instr. and Meth. 148 (1978) 125.

    Article  CAS  Google Scholar 

  37. J. L. Yntema, Nucl. Instr. and Meth. 113 (1973) 605.

    Article  CAS  Google Scholar 

  38. G. E. Thomas, P. K. Den Hartog, J. L. Bicek, and J. L. Yntema, Proc. 6th Ann. Conf. INTDS, Berkeley 1977, LBL-7950.

    Google Scholar 

  39. U. Sander, H. H. Bukow, and H. v. Buttlar, J. de Physique 40 (1979) C1–301.

    Google Scholar 

  40. D. Balzer, these Proceedings.

    Google Scholar 

  41. P. Maier-Komor, Proc. 5th Ann. Conf. INTDS, Los Alamos 1976, LA-6850-C.

    Google Scholar 

  42. U. Sander and H. H. Bukow, Radiation Effects 40 (1979) 143.

    Article  CAS  Google Scholar 

  43. P. Maier-Komor and E. Ranzinger, these Proceedings.

    Google Scholar 

  44. J. L. Gallant, D. Yaraskavitch, N. Burn, A. B. McDonald, and H. R. Andrews, these Proceedings.

    Google Scholar 

  45. R. L. Auble and D. M. Galbraith, these Proceedings.

    Google Scholar 

  46. A. Meens, Centre de Recherches Nucleaires, Strasbourg, France, private communication.

    Google Scholar 

  47. B. Huck and H. Wirth, Max-Planck-Institut für Kernphysik, Heidelberg, West Germany, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Maier-Komor, P. (1981). A Review of Methods to Prepare Self-Supporting Carbon Targets and of Their Importance in Accelerator Experiments. In: Jaklovsky, J. (eds) Preparation of Nuclear Targets for Particle Accelerators. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3956-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3956-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3958-8

  • Online ISBN: 978-1-4684-3956-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics