Skip to main content

Animal Models of Alzheimer’s Disease

  • Chapter
Book cover Dementia

Abstract

Alzheimer’s disease and other dementias are placing increasing pressures on the health care systems of Western societies as the proportion of elderly in the general population continues to rise with improvements in the standards of general health care (Isaacs, 1983). As a consequence, the last decade has seen an increasing investment in basic as well as applied research into the cause and course of these diseases, and new approaches to their prophylaxis and treatment. A substantial section of this research has of necessity involved development of animal models in the attempt to identify and reproduce components of the cellular, neurochemical and genetic neuropathology that will lead to cognitive and behavioural changes in the animals similar to the psychopathology observed in human dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, C.R., Selkoe, D.J., Potter, H. et al. (1989) al-Antichymotrypsin is present together with the 13-protein in monkey brain amyloid deposits. Neuroscience, 32, 715–20.

    Article  PubMed  CAS  Google Scholar 

  • Adolfsson, R., Gottfries, C.G., Roos, B.E. and Winblad, B. (1979) Changes in brain catecholamines in patients with dementia of the Alzheimer type. Br. J. Psychiatry, 135, 216–23.

    Article  PubMed  CAS  Google Scholar 

  • Algeri, S., Calderini, G., Toffano, G. and Ponzio, F. (1983) Neurotransmitter alterations in aging rats. In Aging of the Brain (eds D. Samuel, S. Algeri, S. Gershon et al.), Raven Press, New York, pp. 227–43.

    Google Scholar 

  • Arai, H., Kobayashi, K., Ichimiya, Y. et al. (1984) A preliminary study of free amino acids in the post mortem temporal cortex from Alzheimer-type dementia patients. Neurobiol. Aging, 5, 319–21.

    Article  PubMed  CAS  Google Scholar 

  • Araki, H., Uchiyama, Y., Kawashima, K. and Aihara, H. (1986) Impairment of memory and changes in neurotransmitters induced by basal forebrain lesions in rats. Jpn. J. Pharmacol., 41, 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Arendash, G.W., Millard, W.J., Dunn, A.J. and Meyer, E.M. (1987) Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat. Science, 238, 952–6.

    Article  PubMed  CAS  Google Scholar 

  • Arieff, A.I., Cooper, J.D., Armstrong, D. and Lazorowitz, V.C. (1979) Dementia, renal failure, and brain aluminum. Ann. Intern. Med., 90, 741–7.

    Article  PubMed  CAS  Google Scholar 

  • Arnsten, A.F.T. and Goldman-Rakic, P.S. (1985) Alpha2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science, 230, 1273–6.

    Article  PubMed  CAS  Google Scholar 

  • Asante, J.W., Cross, A.J., Deakin, J.F.W. et al. (1983) Evaluation of ethylcholine mustard aziridinium ion (ECMA) as a specific neurotoxin of brain cholinergic neurones. Br. J. Pharmacol., 80, 573 P.

    Article  Google Scholar 

  • Banks, W.A. and Kastin, A.J. (1986) Aging, peptides and the blood—brain barrier: implications 256 Animal models of Alzheimer’s disease and speculations. In Treatment Development Strategies for Alzheimer’s Disease (eds T. Crook, R. Bartus, S. Ferris and S. Gershon ), Mark Powley, Madison, Conn., pp. 245–65.

    Google Scholar 

  • Barnes, C.A. (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol., 93, 74–104.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, C.A. (1990) Animal models of age-related cognitive decline. In Handbook of Neuropsychology, Vol. 4 (eds. F. Boller and J. Grafman ), Elsevier, Amsterdam, pp. 169–96.

    Google Scholar 

  • Barnes, C.A., Nadel, L. and Honig, W.K. (1980) Spatial memory deficit in senescent rats. Can. J. Psychol., 34, 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Bartus, R.T. (1978) Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacol. Biochem. Behay., 9, 833–6.

    Article  CAS  Google Scholar 

  • Bartus, R.T. (1979) Physostigmine and recent memory: effects in young and aged nonhuman primates. Science, 206, 1087–9.

    Article  PubMed  CAS  Google Scholar 

  • Bartus, R.T. and Johnson, H.R. (1976) Short-term memory in the rhesus monkey: disruption from the anti-cholinergic scopolamine. Pharmacol. Biochem. Behay., 5, 39–46.

    Article  CAS  Google Scholar 

  • Bartus, R.T., Dean, R.L. and Beer, B. (1980) Memory deficits in aged cebus monkeys and facilitation with central cholinomimetics. Neurobiol. Aging, 1, 145–52.

    Article  CAS  Google Scholar 

  • Bartus, R.T., Dean, R.L., Beer, B. and Lippa, A.S. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408–17.

    Article  PubMed  CAS  Google Scholar 

  • Bartus, R.T., Flicker, C. and Dean, R.L. (1983) Logical principles for the development of animal models of age-related memory impairments. In Assessment in Geriatric Psychiatry (eds T. Crook, S. Ferris and R. Bartus ), Mark Powley, New Canaan, Conn., pp. 263–99.

    Google Scholar 

  • Bartus, R.T., Flicker, C., Dean, R.L. et al. (1986) Behavioral and biochemical effects of nucleus basalis magnocellularis lesions: implications and possible relevance to understanding or treating Alzheimer’s disease. Prog. Brain Res., 70, 345–61.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., Benoit, R., Mazurek, M.F. et al. (1986) Somatostatin-28112-like immunoreactivity is reduced in Alzheimer’s disease cerebral cortex. Brain Res., 368, 380–3.

    Article  PubMed  CAS  Google Scholar 

  • Benton, J.S., Bowen, D.M., Allen, S.J. et al. (1982) Alzheimer’s disease as a disorder of the isodendritic core. Lancet, 1, 456.

    Article  PubMed  CAS  Google Scholar 

  • Blessed, G., Tomlinson, B.E. and Roth, M. (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry, 114, 797–811.

    Article  PubMed  CAS  Google Scholar 

  • Bondareff, W., Mountjoy, C.Q. and Roth, M. (1981) Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet, 1, 783–4.

    Article  PubMed  CAS  Google Scholar 

  • Bons, N., Mestre, N. and Petter, A. (1991) Occurrence of neuritic plaques and neurofibrillary changes in the cerebral cortex of aged lemurian primate. Comptes Rendus, 313, 213–19.

    CAS  Google Scholar 

  • Bowen, D.M., Smith, C.B., White, P. and Davison, A.N. (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 99, 459–96.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, D.M., Allen, S.J., Benton, J.S. et al. (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J. Neurochem., 41, 266–72.

    Article  PubMed  CAS  Google Scholar 

  • Brito, G.N.O., Davis, B.J., Stopp, L.C. and Stanton, M.E. (1983) Memory and the septohippocampal cholinergic system in the rat. Psychopharmacology, 81, 315–20.

    Article  PubMed  CAS  Google Scholar 

  • Brizzee, K.R., Sherwood, N. and Timiras, P. (1968) A comparison of cell populations at various depth levels in cerebral cortex of young adult and aged Long Evans rats. J. Gerontol., 23, 289–97.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, M.E. (1981) Serial studies of the development of cerebral amyloidosis and vacuolar degeneration in murine scrapie. J. Comp. Pathol., 91, 589–97.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, M.E. (1984) Scrapie and Alzheimer’s disease. Psychol. Med., 14, 497–500.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, M.E. and Fraser, H. (1975) Amyloid plaques in the brains of mice infected with scrapie: morphological variation and staining properties. Neuropathol. Appl. Neurobiol., 7, 289–98.

    Article  Google Scholar 

  • Bruce, M.E., Dickinson, A.G. and Fraser, H. (1976) Cerebral amyloidosis in scrapie in the mouse: effect of agent strain and mouse genotype. Neuropathol. Appl. Neurobiol., 2, 471–8.

    Article  Google Scholar 

  • Burger, P.C. and Vogel, F.S. (1973) The development of the pathologic changes of Alzheimer’s disease and senile dementia in patients with Down syndrome. Am. J. Pathol., 73, 457–76.

    PubMed  CAS  Google Scholar 

  • Campbell, B.A., Krauter, E.E. and Wallace, J.E. (1980) Animal models of aging: sensory-motor and cognitive function in the aged rat. In The Psychobiology of Aging (ed. D. Stein ), Elsevier North Holland, Amsterdam, pp. 201–26.

    Google Scholar 

  • Candy, J.M., Klinowski, K., Perry, R.H. et al. (1986) Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet, 1, 354–7.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A. and Winblad, B. (1977) Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J. Neural Transco., 38, 271–6.

    Article  Google Scholar 

  • Carlton, P.L. (1969) Brain acetylcholine and inhibition. In Reinforcement and Behavior (ed. J.T. Tapp ), Academic Press, New York, pp. 287–327.

    Google Scholar 

  • Chan-Palay, V. (1987) Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia. J. Comp. Neurol., 260, 201–23.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay, V., Lang, W., Haesler, U. et al. (1986) Distribution of altered hippocampal neurons and axons immunoreactive with antisera against neuropeptide Y in Alzheimer’s-type dementia. J. Comp. Neurol., 248, 376–94.

    Article  PubMed  CAS  Google Scholar 

  • Cheal, M.L. (1981) Scopolamine disrupts maintenance of attention rather than memory processes. Behay. Neural Biol., 33, 163–87.

    Article  CAS  Google Scholar 

  • Chrobak, J.J., Hanin, I. and Walsh, T.J. (1987) AF64A (ethylcholine aziridinium ion), a cholinergic neurotoxin, selectively impairs working memory in a multiple component T-maze task. Brain Res., 414, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Cole, G. and Neal, J.W. (1990) The brain in aged elephants. J. Neuropathol. Exp. Neurol., 49, 190–1.

    Article  PubMed  CAS  Google Scholar 

  • Collerton, D. (1986) Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience, 19, 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Collier, T.J., Gash, D.M. and Sladek, J.R. (1988) Transplantation of norepinephrine neurons into aged rats improves performance of a learned task. Brain Res., 448, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Connor, D.J., Langlais, P.J. and Thal, L.J. (1991) Behavioral impairments after lesions of the nucleus basalis by ibotenic acid and quisqualic acid. Brain Res., 555, 84–90.

    Article  PubMed  CAS  Google Scholar 

  • Cord, J.P., Meade, R.P. and Davis, L.G. (1988) Immunocytochemical localization of the precursor protein for ß-amyloid in the rat central nervous system. Neuron, 1, 835–46.

    Article  Google Scholar 

  • Cork, L.C., Powers, R.E., Selkoe, D.J. et al. (1988) Neurofibrillary tangles and senile plaques in aged bears. J. Neuropathol. Exp. Neurol., 47, 629–41.

    Article  PubMed  CAS  Google Scholar 

  • Corsellis, J.A.N. (1976) Ageing and the dementias. In Greenfield’s Neuropathology, 3rd edn (eds W. Blackwood and J.A.N. Corsellis ), Arnold, London, pp. 796–848.

    Google Scholar 

  • Coyle, J.T. (1982) Excitatory amino acid neurotoxins. In Handbook of Psychopharmacology, Volume 15: New Techniques in Psychopharmacology (eds L.L. Iversen, S.D. Iversen, and S.H. Snyder ), Plenum Press, New York, pp. 237–69.

    Chapter  Google Scholar 

  • Coyle, J.T., Price, D.L. and DeLong, M.R. (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science, 219, 1184–90.

    Article  PubMed  CAS  Google Scholar 

  • Crapper, D.R. and Dalton, A.J. (1973a) Alterations in short-term retention, conditioned avoidance response acquisition and motivation following aluminum induced neurofibrillary degeneration. Physiol. Behay., 10, 925–33.

    Article  CAS  Google Scholar 

  • Crapper, D.R. and Dalton, A.J. (1973b) Aluminum induced neurofibrillary degeneration, brain electrical activity and alterations in acquisition and retention. Physiol. Behay., 10, 935–45.

    Article  CAS  Google Scholar 

  • Crapper, D.R., Krishnan, S.S. and Quittkat, S. (1976) Aluminum, neurofibrillary degeneration and Alzheimer’s disease. Brain, 99, 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A.J., Crow, T.J., Perry, E.K. et al. (1981) Reduced dopamine-beta-hydroxylase activity in Alzheimer’s disease. Br. Med. J., 282, 93–4.

    Article  CAS  Google Scholar 

  • Curcio, C.A. and Coleman, P.D. (1982) Stability of neuron number in cortical barrels of aging mice. J. Comp. Neurol., 212, 158–72.

    Article  PubMed  CAS  Google Scholar 

  • D’Amato, R.J., Zweig, R.M., Whitehouse, P.J. et al. (1987) Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann. Neurol., 22, 229–36.

    Article  PubMed  Google Scholar 

  • Davies, P. and Maloney, A.J.F. (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 11, 1403.

    Article  Google Scholar 

  • Davies, P., Katzman, R. and Terry, R.D. (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer senile dementia. Nature, 288, 279–80.

    Article  PubMed  CAS  Google Scholar 

  • Dawbarn, D., Rossor, M.N., Mountjoy, C.Q. et al. (1986) Decreased somatostatin immunoreactivity but not neuropeptide Y immunoreactivity in cerebral cortex in senile dementia of Alzheimer type. Neurosci. Lett., 70, 154–9.

    Article  PubMed  CAS  Google Scholar 

  • Dayan, A.D. (1971) Comparative neuropathology of ageing. Studies on the brains of 47 species of vertebrates. Brain, 94, 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Deacon, R.M.J. (1991) Pharmacological studies of a rat spatial delayed nonmatch-to-sample task as an animal model of dementia. Drug Dev. Res., 24, 67–79.

    Article  CAS  Google Scholar 

  • Dean, R.L. and Bartus, R.T. (1985) Animal models of geriatric cognitive dysfunction: evidence for an important cholinergic involvement. In Senile Dementia of the Alzheimer Type (eds J. Traber and W.H. Gispen ), Springer-Verlag, Heidelberg, pp. 269–82.

    Chapter  Google Scholar 

  • Dean, R.L., Goas, J.A., Regan, B. et al. (1981) Age-related differences in the lifespan of the C57BL/ 6J mouse. Exp. Aging Res., 7, 427–51.

    Article  PubMed  Google Scholar 

  • De Souza, E.B., Whitehouse, P.J., Kuhar, M.J. et al. (1986) Reciprocal changes in corticotrophin releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature, 319, 593–5.

    Article  PubMed  Google Scholar 

  • Deutsch, J.A. (1971) The cholinergic synapse and the site of memory. Science, 174, 788–94.

    Article  PubMed  CAS  Google Scholar 

  • de Wied, D. and van Rhee, J.M. (1982) Neuropeptides, mental performance and aging. Life Sci., 31, 709–19.

    Article  PubMed  Google Scholar 

  • Diamond, M.C., Johnson, R.E. and Gold, M.W. (1977) Changes in neuron number and size and glia number in the young, adult and aging rat medial occipital cortex. Behay. Biol., 20, 409–18.

    Article  CAS  Google Scholar 

  • Dickinson, A.G., Bruce, M.E. and Scott, J.R. (1983) The relevance of scrapie as an experimental model for Alzheimer’s disease. In Banbury Report 15: Biological Aspects of Alzheimer’s Disease, Cold Spring Harbor, Maine, pp. 387–98.

    Google Scholar 

  • Drachman, D.A. and Leavitt, J. (1974) Human memory and the cholinergic system. Arch. Neurol., 30, 113–21.

    Article  PubMed  CAS  Google Scholar 

  • Drachman, D.A. and Sahakian, B.J. (1980) Memory, aging and pharmacosystems. In The Psychobiology of Aging: Problems and Perspectives (ed. D. Stein ), Elsevier/North Holland, Amsterdam, pp. 347–68.

    Google Scholar 

  • Dubois, B., Mayo, W., Agid, Y. et al. (1985) Profound disturbances of spontaneous and learned behaviors following lesions of the nucleus basalis magnocellularis in the rat. Brain Res., 338, 249–58.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B. (1985) Comparative effects of cholinergic drugs and lesions of nucleus basalis or fimbria-fornix on delayed matching in rats. Psychopharmacology, 87, 357–63.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B. (1990) Neural transplantation in animal models of dementia. Eur. J. Neurosci., 2, 567–87.

    Article  PubMed  Google Scholar 

  • Dunnett, S.B. (1991) Cholinergic grafts, ageing and memory in rats. Trends Neurosci., 14, 371–6.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B. and Barth, T.M. (1991) Animal models of Alzheimer’s disease and dementia (with an emphasis on cortical cholinergic systems). In Behavioural Models in Psychopharmacology (ed. P. Willner ), Cambridge University Press, London, pp. 359–418.

    Google Scholar 

  • Dunnett, S.B., Whishaw, I.Q., Jones, G.H. and Bunch, S.T. (1987) Behavioural, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rats. Neuroscience, 20, 653–69.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Evenden, J.L. and Iversen, S.D. (1988a) Delay-dependent short-term memory deficits in aged rats. Psychopharmacology, 96, 174–80.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Badman, F., Rogers, D.C. et al. (1988b) Cholinergic grafts in the neocortex or hippocampus of aged rats: reduction of delay-dependent deficits in the delayed non-matching to position task. Exp. Neurol., 102, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Rogers, D.C. and Jones, G.H. (1989) Effects of nucleus basalis magnocellularis lesions on delayed matching and non-matching to position tasks: disruption of conditional discrimination learning but not of short-term memory. Eur. J. Neurosci., 1, 395–406.

    Article  PubMed  Google Scholar 

  • Dunnett, S.B., Martel, F. and Iversen, S.D. (1990a) Proactive interference effects on short-term memory in rats. II. Effects in young and aged rats. Behay. Neurosci., 104, 666–70.

    Article  CAS  Google Scholar 

  • Dunnett, S.B., Wareham, A.T. and Torres, E.M. (1990b) Cholinergic blockade in prefrontal cortex and hippocampus disrupts short-term memory in rats. NeuroReport, 1, 61–4.

    CAS  Google Scholar 

  • Dunnett, S.B., Everitt, B.J. and Robbins, T.W. (1991) The basal forebrain—cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Trends Neurosci., 14, 494–501.

    Article  PubMed  CAS  Google Scholar 

  • Elias, P.K. and Elias, M.F. (1976) Effects of age on learning ability: contributions from the animal literature. Exp. Aging Res., 2, 165–86.

    Article  Google Scholar 

  • Epstein, C.J. (1988) Mouse models for Down syndrome and Alzheimer’s disease. Discuss. Neuro-sci., 5, 127–34.

    Google Scholar 

  • Etherington, R., Mittleman, G. and Robbins, T.W. (1987) Comparative effects of nucleus basalis and fimbria-fornix lesions on delayed matching and alternation tests of memory. Neurosci. Res. Comm., 1, 135–43.

    CAS  Google Scholar 

  • Etienne, P., Robitaille, Y., Wood, P. et al. (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience, 19, 1279–91.

    Article  PubMed  CAS  Google Scholar 

  • Everitt, B.J., Robbins, T.W., Evenden, J.L. et al. (1987) The effects of excitotoxic lesions of the substanita innominata, ventral and dorsal globus pallidus on the acquisition and retention of a conditional visual discrimination: implications for cholinergic hypotheses of learning and memory. Neuroscience, 22, 441–69.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, M.L. (1976) Aging changes in the morphology of cortical dendrites. In Neurobiology of Aging (eds R.D. Terry and S. Gershon ), Raven Press, New York, pp. 221–7.

    Google Scholar 

  • Fibiger, H.C. (1991) Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci., 14, 220–3.

    Article  PubMed  CAS  Google Scholar 

  • Finch, C.B. (1973) Catecholamine metabolism in the brains of ageing male mice. Brain Res., 52, 261–76.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, W., Wictorin, K., Bjorklund, A. et al. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature, 329, 65–8.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, W., Gage, F.H. and Björklund, A. (1989) Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur. J. Neurosci., 1, 34–45.

    Article  PubMed  Google Scholar 

  • Fisher, A. and Hanin, I. (1986) Potential animal models for senile dementia of Alzheimer’s type, with emphasis on AF64A-induced toxicity. Annu. Rev. Pharmacol. Toxicol., 26, 161–81.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, A., Mantione, C.R., Abraham, D.J. and Hanin, I. (1982) Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF64A) in vivo. J. Pharmacol. Exp. Ther., 222, 140–5.

    PubMed  CAS  Google Scholar 

  • Flicker, C., Ferris, S.F., Bartus, R.T. and Crook, T. (1984) Effects of aging and dementia upon recent visuo-spatial memory. Neurobiol. Aging, 5, 75–83.

    Article  Google Scholar 

  • Flood, J.F., Morley, J.E. and Roberts, E. (1991) Amnestic effects in mice of four synthetic peptides homologous to amyloid I3-protein from patients with Alzheimer disease. Proc. Natl Acad. Sci. USA, 88, 3363–6.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, H. and Bruce, M.E. (1973) Argyrophilic plaques in mice inoculated with scrapie from particular sources. Lancet, 1, 617.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H. and Bjorklund, A. (1986) Cholinergic grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine sensitive mechanism. J. Neurosci., 6, 2837–47.

    PubMed  CAS  Google Scholar 

  • Gage, F.H., Bjorklund, A., Stenevi, U. and Dun-nett, S.B. (1983) Intracerebral grafting in the aging brain. In Aging of the Brain (eds W.H. Gispen and J. Traber ), Elsevier, Amsterdam, pp. 125–37.

    Google Scholar 

  • Gage, F.H., Bjorklund, A., Stenevi, U. et al. (1984a) Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science, 225, 533–6.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H., Dunnett, S.B. and Bjorklund, A. (1984b) Spatial learning and motor deficits in aged rats. Neurobiol. Aging, 5, 43–8.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H., Kelly, P.A.T. and Bjorklund, A. (1984c) Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. J. Neurosci., 4, 2856–66.

    PubMed  CAS  Google Scholar 

  • Gage, F.H., Dunnett, S.B. and Björklund, A. (1989) Age-related impairments in spatial memory are independent of those in sensorimotor skills. Neurobiol. Aging, 10, 347–52.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H., Fisher, L.J., Jinnah, J.H.A. et al. (1990) Grafting genetically modified cells to the brain: conceptual and technical issues. Prog. Brain Res., 82, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Gajdusek, D.C. (1977) Unconventional viruses and the origin and disappearance of kuru. Science, 197, 943–60.

    Article  PubMed  CAS  Google Scholar 

  • Gajdusek, D.C. (1991) The transmissable amyloidoses — genetic control of spontaneous generation of infectious amyloid proteins by nucleation of configurational change in host precursors —Kuru—CJD—GSS—scrapie—BSE. Eur. J. Epidemiol., 7, 532–44.

    Article  Google Scholar 

  • Giaccone, G., Verga, L., Finazzi, M. et al. (1990) Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neurosci. Lett., 114, 178–83.

    Article  PubMed  CAS  Google Scholar 

  • Goate, A., Chartier-Harlin, M.-C., Mullan, M. et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349, 704–6.

    Article  PubMed  CAS  Google Scholar 

  • Goedert, M., Fine, A., Hunt, S.P. and Ullrich, A. (1986) Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system. Lesion effects in the rat brain and levels in Alzheimer’s disease. Mol. Brain Res., 1, 85–92.

    Article  Google Scholar 

  • Goetsch, V.L. and Isaac, W. (1982) Age and visual sensitivity in the rat. Physiol. Psychol., 10, 199–201.

    Google Scholar 

  • Gold, P.E. and McGaugh, J.L. (1975) Changes in learning and memory during aging. In Neurobiology of Aging (eds J.M. Ordy and K.R. Brizzee ), Plenum Press, New York, pp. 145–58.

    Chapter  Google Scholar 

  • Gold, P.E., McGaugh, J.L., Hankins, L.L. et al. (1981) Age dependent changes in retention in rats. Exp. Aging Res., 8, 53–8.

    Article  Google Scholar 

  • Goldgaber, D., Lerman, M.I., McBride, O.W. et al. (1987) Characterisation and chromosomal localisation of a cDNA encoding brain amyloid of Alzheimer’s disease. Science, 235, 877–80.

    Article  PubMed  CAS  Google Scholar 

  • Goodrick, C.L. (1972) Learning by mature-young and aged Wistar albino rats as a function of test complexity. J. Gerontol., 27, 353–7.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, W.C., Scobie, S.R. and Frankl, S.E. (1978) Age-related differences in electric shock detection and escape thresholds in Sprague-Dawley albino rats. Exp. Aging Res., 4, 23–35.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, S.P. (1962) Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. Am. J. Physiol., 202, 872–82.

    PubMed  CAS  Google Scholar 

  • Gurland, B.J. and Birkett, D.P. (1983) The senile and pre-senile dementias. In Handbook of Psychiatry. 2. Mental Disorders and Somatic Illness (ed. M.H. Lader ), Cambridge University Press, Cambridge, pp. 128–46.

    Google Scholar 

  • Hagan, J.J. and Morris, R.G.M. (1988) The cholinergic hypothesis of memory: a review of animal experiments. In Handbook of Psychopharmacology, Vol. 20, Psychopharmacology of the Aging Nervous System (eds L.L. Iversen, S.D. Iversen and S.H. Snyder ), Plenum Press, New York, pp. 237–323.

    Google Scholar 

  • Hardy, J., Cowburn, R., Barton, A. et al. (1987a) Region specific loss of glutamate innervation in Alzheimer’s disease. Neurosci. Lett., 73, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., Cowburn, R., Barton, A. et al. (1987b) A disorder of cortical GABAergic innervation in Alzheimer’s disease. Neurosci. Lett., 73, 192–6.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F. (1983) Alzheimer’s disease caused by a lack of nerve growth factor? Ann. Neurol., 14, 109–10.

    Article  Google Scholar 

  • Hefti, F. (1986) Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci., 6, 215–562.

    Google Scholar 

  • Hefti, F. and Weiner, W.J. (1986) Nerve growth factor and Alzheimer’s disease. Ann. Neurol., 20, 275–81.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F. and Will, B. (1987) Nerve growth factor is a neurotrophic factor for forebrain cholinergic neurons: implications for Alzheimer’s disease. In Alzheimer’s Disease: Advances in Basic Research and Therapies (eds R.J. Wurtman, S.R. Corkin and J.H. Growden ), Centre for Brain Sciences and Metabolism, Cambridge, Mass., pp. 265–74.

    Google Scholar 

  • Heise, G.A. (1975) Discrete trial analysis of drug action. Fed. Proc., 34, 1898–903.

    PubMed  CAS  Google Scholar 

  • Hepler, D.J., Wenk, G.L., Cribbs, B.L. et al. (1985) Memory impairments following basal forebrain lesions. Brain Res., 346, 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Höhmann, C.F., Capone, G., Oster-Granite, M.-L. and Coyle, J.T. (1990) Transplantation of brain tissue from murine trisomy 16 into euploid hosts: effects of gene imbalance on brain development. Prog. Brain Res., 82, 203–14.

    Article  PubMed  Google Scholar 

  • Hunter, A.J., Caulfield, M.P. and Kimberlin, R.H. (1986) Learning ability of mice infected with different strains of scrapie. Physiol. Behay., 36, 1089–92.

    Article  CAS  Google Scholar 

  • Ingram, D.K., London, E.D., Reynolds, M.A. et al. (1981) Differential effects of age on motor performance in two mouse strains. Neurobiol. Aging, 2, 221–7.

    Article  PubMed  CAS  Google Scholar 

  • Inukai, T. (1928) On the loss of Purkinje cells with advancing age from the cerebellar cortex of the albino rat. J. Comp. Neurol., 34, 1–31.

    Article  Google Scholar 

  • Irle, E., Kessler, J. and Markowitsch, H.J. (1987) Primate learning tasks reveal strong impairments in patients with presenile or senile dementia of the Alzheimer type. Brain Cogn., 6, 429–49.

    Article  PubMed  CAS  Google Scholar 

  • Isaacs, A.D. (1983) The senium. In Handbook of Psychiatry. Volume 2: Mental Disorders and Somatic Illness (ed. M.H. Lader ), Cambridge University Press, Cambridge, pp. 88–97.

    Google Scholar 

  • Ishihara, T., Gondo, T., Takahashi, M. et al. (1991) Immunohistochemical and immunoelectron microscopical characterization of cerebrovascular and senile plaque amyloid in aged dogs’ brain. Brain Res., 548, 196–205.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, T. (1966) Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathol., 6, 181–7.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, H.A. and Erner, S. (1972) Neuron survival in the aging mouse brain. J. Gerontol., 7, 111–17.

    CAS  Google Scholar 

  • Johnston, M.V., McKinney, M. and Coyle, J.T. (1979) Evidence for a cholinergic projection to neocortex from neurons in the basal forebrain. Proc. Natl Acad. Sci. USA, 76, 5392–6.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Lemaire, H.-G., Unterbeck, A. et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–6.

    Article  PubMed  CAS  Google Scholar 

  • Kawabata, S., Higgins, G.A. and Gordon, J.W. (1991) Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature, 354, 476–8.

    Article  PubMed  CAS  Google Scholar 

  • Kawarabayashi, T., Shoji, M., Harigaya, Y. et al. (1991) Amyloid ß/A4 protein precursor is widely distributed in both the central and peripheral nervous systems of the mouse. Brain Res., 552, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian, Z.S. (1987) Aluminum toxicity among other views on the etiology of Alzheimer’s disease. Neurobiol. Aging, 7, 537–9

    Article  Google Scholar 

  • Kimberlin, R.H. (1984) Scrapie: the disease and the infectious agent. Trends Neurosci., 7, 312–16.

    Article  Google Scholar 

  • Kitt, C.A., Price, D.L., Struble, R.G. et al. (1984) Evidence for cholinergic neurites in senile plaques. Science, 226, 1443–5.

    Article  PubMed  CAS  Google Scholar 

  • Kitt, C.A., Struble, R.G., Cork, L.C. et al. (1985) Catecholaminergic neurites in senile plaques in prefrontal cortex of aged nonhuman primates. Neuroscience, 16, 691–9.

    Article  PubMed  CAS  Google Scholar 

  • Klatzo, I., Wisniewski, H. and Streicher, E. (1965) Experimental production of neurofibrillary degeneration. J. Neuropathol. Exp. Neurol., 24, 187–99.

    Article  PubMed  CAS  Google Scholar 

  • Knowlton, B.J., Wenk, G.L., Olton, D.S. and Coyle, J.T. (1985) Basal forebrain lesions produce a dissociation of trial-dependent and trial-independent memory performance. Brain Res., 345, 315–21.

    Article  PubMed  CAS  Google Scholar 

  • Kopelman, M.D. (1986) The cholinergic neurotransmitter system in human memory and dementia: a review. Q. J. Exp. Psychol., 38A, 535–73.

    CAS  Google Scholar 

  • Kopelman, M.D. and Corn, T.H. (1988) Cholinergie ‘blockade’ as a model for cholinergic depletion: a comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain, 111, 1079–110.

    Article  PubMed  Google Scholar 

  • Kowell, N.W., Beal, M.F., Busciglio, J. et al. (1991) An in vivo model for the neurodegenerative effects of f3-amyloid and protection by substance P. Proc. Natl Acad. Sci. USA, 88, 7247–51.

    Article  Google Scholar 

  • Kubanis, P. and Zornetzer, S.F. (1981) Age-related behavioral and neurobiological changes: a review with an emphasis on memory. Behay. Neural Biol., 31, 115–72.

    Article  CAS  Google Scholar 

  • Kullenbeck, H. (1944) Senile changes in the brain of Wistar Institute rats. Anat. Rec., 88, 441.

    Google Scholar 

  • Landfield, P.W. (1983) Mechanisms of altered neural function during aging. In Aging of the Brain (eds. W.H. Gispen and J. Traber ), Elsevier, Amsterdam, pp. 51–71.

    Google Scholar 

  • Landfield, P.W., Braun, L.D., Pitler, T.A. et al. (1981) Hippocampal aging in rats: a morpho-metric study of multiple variables in semithin sections. Neurobiol. Aging, 2, 265–75.

    Article  PubMed  CAS  Google Scholar 

  • Levine, M.S., Lloyd, R.L., Fisher, R.S. et al. (1987) Sensory, motor and cognitive alterations in aged cats. Neurobiol. Aging, 8, 253–63.

    Article  Google Scholar 

  • Levy, A., Kant, G.J., Meyerhoff, J.L. and Jarrard, L.E. (1984) Non-cholinergic neurotoxic effects of AF64A in the substantia nigra. Brain Res., 305, 169–72.

    Article  PubMed  CAS  Google Scholar 

  • Ling, E.-A. and Leblond, C.P. (1973) Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum. J. Comp. Neurol., 149, 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Lippa, A.S., Pelham, R.W., Beer, B. et al. (1980) Brain cholinergic dysfunction and memory in aged rats. Neurobiol. Aging, 1, 13–19.

    Article  PubMed  CAS  Google Scholar 

  • LoConte, G., Bartolini, L., Casamenti, F. et al. (1982) Lesions of cholinergic forebrain nuclei: changes in avoidance behavior and scopolamine actions. Pharmacol. Biochem. Behay., 17, 933–7.

    Article  CAS  Google Scholar 

  • Lowy, A.M., Ingram, D.K., Olton, D.S. et al. (1985) Discrimination learning requiring different memory components in rats: age and neuro-chemical comparisons. Behay. Neurosci., 99, 638–51.

    Article  CAS  Google Scholar 

  • Mann, D.M.A. (1985) The neuropathology of Alzheimer’s disease: a review with pathogenetic, aetiological and therapeutic considerations. Mech. Ageing Dev., 31, 213–55.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D.M.A., Yates, P.O. and Marcyniuk, B. (1984) Monoaminergic neurotransmitter systems in Alzheimer’s presenile dementia and senile dementia of Alzheimer type. Clin. Neuropathol., 3, 199–205.

    PubMed  CAS  Google Scholar 

  • Mann, D.M.A., Brown, A., Prinja, D. et al. (1989) An analysis of the morphology of senile plaques in Down’s syndrome patients of different ages using immunocytochemical and lectin histochemical techniques. Neuropathol. Appl. Neurobiol., 15, 317–29.

    Article  PubMed  CAS  Google Scholar 

  • Mantione, C.R., Fisher, A. and Hanin, I. (1981) The AF64A-treated mouse: possible model for central cholinergic hypofunction. Science, 213, 579–80.

    Article  PubMed  CAS  Google Scholar 

  • Marcyniuk, B., Mann, D.M.A. and Yates, P.O. (1986) The topography of cell loss from locus coeruleus in Alzheimer’s disease. J. Neurol. Sci., 76, 335–45.

    Article  PubMed  CAS  Google Scholar 

  • Markowska, A.J., Stone, W.S., Ingram, D.K. et al. (1989) Individual differences in aging: behavioral and neurobiological correlates. Neurobiol. Aging, 10, 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Markowska, A.J., Wenk, G.L. and Olton, D.S. (1990) Nucleus basalis magnocellularis and memory: differential effects of two neurotoxins. Behay. Neural Biol., 54, 13–26.

    Article  CAS  Google Scholar 

  • Marshall, J.F. and Berrios, N. (1979) Movement disorders of aged rats: reversal by dopamine receptor stimulation. Science, 206, 477–9.

    Article  PubMed  CAS  Google Scholar 

  • Masters, C.L. and Beyreuther, K. (1987) Neuronal origin of cerebral amyloidogenic proteins: their role in Alzheimer’s disease and unconventional virus diseases of the nervous system. In Selective Neuronal Death, Ciba Foundation Symposium 126, Wiley, Chichester, pp. 49–64.

    Google Scholar 

  • McDermott, J.R., Smith, I., Iqbal, K. and Wisniewski, H.M. (1979) Brain aluminum in aging and Alzheimer’s disease. Neurology, 29, 809–14.

    Article  PubMed  CAS  Google Scholar 

  • McFarland, D.J. and Hotchin, J. (1980) Early behavioral abnormalities in mice due to scrapie virus encephalopathy. Biol. Psychiatry, 15, 37–44.

    PubMed  CAS  Google Scholar 

  • McFarland, D.J., Baker, F.D. and Hotchin, J. (1980) Host and viral genetic determinants of the behavioral effects of scrapie encephalopathy. Physiol. Behay., 24, 911–14.

    Article  CAS  Google Scholar 

  • McGeer, E.G. (1981) Neurotransmitter systems in aging and senile dementia. Prog. Neurobiol., 8, 111–19.

    Google Scholar 

  • McGeer, E.G., Fibiger, H.C., McGeer, P.L. and Wickson, V. (1971) Aging and brain enzymes. Exp. Gerontol., 6, 391–6.

    Article  PubMed  CAS  Google Scholar 

  • McGurk, S.R., Hartgraves, S.L., Kelly, P.H. et al. (1987) Is ethylcholine mustard aziridinium ion a specific cholinergic neurotoxin? Neuroscience, 22, 215–24.

    Article  PubMed  CAS  Google Scholar 

  • McNamara, M.C., Benignus, V.A., Benignus, G. and Miller, A.T. (1977) Active and passive avoidance in rats as a function of age. Exp. Aging Res., 3, 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, M., Shintani, M., Nagaoka, A. and Nagawa, Y. (1985) Lesioning of the rat basal forebrain leads to memory impairments in passive and active avoidance tasks. Brain Res., 328, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Montero, C.N. and Hefti, F. (1988) Rescue of lesioned septal cholinergic neurons by nerve growth factor: specificity and requirement for chronic treatment. J. Neurosci., 8, 2986–99.

    PubMed  CAS  Google Scholar 

  • Morgan, D.G. (1987) The dopamine and serotonin systems during aging in human and rodent brain. A brief review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 11, 153–7.

    CAS  Google Scholar 

  • Mountjoy, C.Q., Rossor, M.N., Iversen, L.L. and Roth, M. (1984) Correlation of cortical cholinergic and GABA deficits with quantitative neuro-pathological findings in senile dementia. Brain, 107, 507–18.

    Article  PubMed  Google Scholar 

  • Mufson, E.J. and Stein, D.G. (1980) Behavioral and morphological aspects of aging: an analysis of rat frontal cortex. In The Psychobiology of Aging: Problems and Perspectives (ed. D. Stein ), Elsevier/ North Holland, New York, pp. 99–125.

    Google Scholar 

  • Murray, C.L. and Fibiger, H.C. (1985) Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physostigmine. Neuroscience, 14, 1025–32.

    Article  PubMed  CAS  Google Scholar 

  • Neill, D.B. and Grossman, S.P. (1970) Behavioral effects of lesions or cholinergic blockade of the dorsal and ventral caudate of rats. J. Comp. Physiol. Psychol., 71, 311–17.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L., Ayer-LeLievre, C., Ebendal, T. et al. (1990) Grafts, growth factors, and grafts that make growth factors. Prog. Brain Res., 82, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L., Backlund, E.-O., Ebendal, T. et al. (1991) Intraputaminal infusion of nerve growth factor to support adrenal medullary auto-grafts in Parkinson’s disease. Arch. Neurol., 48, 373–81.

    Article  PubMed  CAS  Google Scholar 

  • Olton, D.S. and Wenk, G.L. (1987) Dementia: animal models of the cognitive impairments produced by degeneration of the basal forebrain cholinergic system. In Psychopharmacology, the Third Generation of Progress (ed. H.Y. Mettzer ), Raven Press, New York, pp. 941–53.

    Google Scholar 

  • Page, K.J., Everitt, B.J., Robbins, T.W. et al. (1991) Dissociable effects on spatial maze and passive avoidance acquisition and retention following AMPA- and ibotenic acid-induced excitotoxic lesions of the basal forebrain in rats: differential dependence on cholinergic neuronal loss. Neuroscience, 43, 457–72.

    Article  PubMed  CAS  Google Scholar 

  • Pendlebury, W.W., Beal, M.F., Kowall, N.W. and Solomon, P.R. (1987) Results of immunocytochemical, neurochemical, and behavioral studies in aluminum-induced neurofilamentous degeneration. In Alzheimer’s Disease: Advances in Basic Research and Therapies (eds R.J. Wurtman, S.R. Corkin and J.H. Growden ), Centre for Brain Sciences and Metabolism, Cambridge, Mass., pp. 529–33.

    Google Scholar 

  • Perl, D.P. and Brody, A.R. (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science, 208, 297–9.

    Article  PubMed  CAS  Google Scholar 

  • Perry, E.K., Perry, R.H., Blessed, G. and Tomlinson, B.E. (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet, 1, 189.

    Article  PubMed  CAS  Google Scholar 

  • Perry, E.K., Tomlinson, B.E., Blessed, G. et al. (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J., 11, 1457–9.

    Article  Google Scholar 

  • Petit, T.L., Biederman, G.B. and McMullen, P.A. (1980) Neurofibrillary degeneration, dendritic dying back, and learning-memory deficits after aluminum administration: implications for brain aging. Exp. Neurol., 67, 152–62.

    Article  PubMed  CAS  Google Scholar 

  • Ponzio, F., Brunello, N. and Algeri, S. (1978) Catecholamine synthesis in brain of ageing rats. J. Neurochem., 30, 1617–20.

    Article  PubMed  CAS  Google Scholar 

  • Ponzio, F., Calderini, G., Lomuscio, G. et al. (1982) Changes in monoamines and their metabolite levels in brain regions of aged rats. Neurobiol. Aging, 3, 23–9.

    Article  PubMed  CAS  Google Scholar 

  • Pradhan, S.N. (1980) Central neurotransmitters and aging. Life Sci., 26, 1643–56.

    Article  PubMed  CAS  Google Scholar 

  • Price, D.L., Whitehouse, P.T., Struble, R.G. et al. (1982) Alzheimer’s disease and Down syndrome. Ann, N.Y. Acad. Sci., 396, 145–6.

    Article  CAS  Google Scholar 

  • Price, D.L., Sisodia, S.S., Koo, E.H. et al. (1990) Brain abnormalities in Alzheimer’s disease and in aged nonhuman primates. In The Neurobiology of Memory (eds L.G. Squire and E. Lindenlaub ), Schattauer-Verlag, Stuttgart, pp. 629–42.

    Google Scholar 

  • Prusiner, S.B. (1991) Molecular biology of prion disease. Science, 252, 1515–22.

    Article  PubMed  CAS  Google Scholar 

  • Pycock, C.J. (1980) Turning behaviour in animals. Neuroscience, 5, 461–514.

    Article  PubMed  CAS  Google Scholar 

  • Quon, D., Wang, Y., Catalano, R. et al. (1991) Formation of 0-amyloid protein deposits in brains of transgenic mice. Nature, 352, 239–41.

    Article  PubMed  CAS  Google Scholar 

  • Rapp, P.R., Rosenberg, R.A. and Gallagher, M. (1987) An evaluation of spatial information processing in aged rats. Behay. Neurosci., 101, 3–12.

    Article  CAS  Google Scholar 

  • Reeves, R.H., Oster-Granite, M.-L. and Gearhart, J.D. (1986) The trisomy 16 mouse as a model of Down syndrome. ILAR News, 29, 4–9.

    Google Scholar 

  • Richards, S.J., Waters, J.L., Beyreuther, K. et al. (1991) Transplants of mouse trisomy 16 hippo-campus provide a model of Alzheimer’s disease neuropathology. EMBO J., 10, 297–303.

    PubMed  CAS  Google Scholar 

  • Riekkinen, P., Riekkinen M., Sirviö, J. et al. (1991) Comparison of the effects of acute and chronic ibotenic acid and quisqualic acid nucleus basalis lesioning. Brain Res. Bull., 27, 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, T.W., Everitt, B.J., Marston, H.M. et al. (1989a) Comparative effects of ibotenic acid-and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behay. Brain Res., 35, 221–41.

    Article  CAS  Google Scholar 

  • Robbins, T.W., Everitt, B.J., Ryan, C.N. et al. (1989b) Comparative effects of quisqualic and ibotenic acid-induced lesions of the substantia innominata and globus pallidus on the acquisition of a conditional visual discrimination: differential effects on cholinergic mechanisms. Neuroscience, 28, 337–52.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, M.B., Friedmann, T., Robertson, R.C. et al. (1988) Grafting of genetically modified cells to the damaged brain: restorative effects of NGF expression. Science, 242, 1575–8.

    Article  PubMed  CAS  Google Scholar 

  • Rossor, M.N., Emson, P.C., Mountjoy, C.Q. et al. (1982) Reduced amounts of immunoreactive somatostatin in temporal cortex in senile dementia of Alzheimer type. Neurosci. Lett., 20, 373–7.

    Article  Google Scholar 

  • Rossor, M.N., Iversen, L.L., Reynolds, G.P. et al. (1984) Neurochemical deficits in early and late onset types of Alzheimer’s disease is age dependent. Br. Med. J., 288, 361–4.

    Google Scholar 

  • Roth, M., Tomlinson, B.E. and Blessed, G. (1967) The relationship between qualitative measures of dementia and of degenerative changes in the cerebral grey matter of elderly subjects. J. R. Soc. Med., 60, 254–8.

    CAS  Google Scholar 

  • Royal College of Physicians (1981) Organic mental impairment in the elderly: implications for research, education and the provision of services. J. R. Coll. Phys. Lond., 15, 141–67.

    Google Scholar 

  • Sabel, B.A. and Stein, D.G. (1981) Extensive loss of subcortical neurons in the aging brain. Exp. Neurol., 73, 507–16.

    Article  PubMed  CAS  Google Scholar 

  • Sahakian, B.J. (1988) Cholinergic drugs and human cognitive performance. In Handbook of Psycho-pharmacology, Vol. 20, Psychopharmacology of the Aging Nervous System (eds L.L. Iversen, S.D. Iversen and S.H. Snyder ), Plenum Press, New York, pp. 393–424.

    Google Scholar 

  • Sahakian, B.J., Morris, R.G., Evenden, J.L. et al. (1988) A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s disease. Brain, 111, 695–718.

    Article  PubMed  Google Scholar 

  • Sarter, M. (1987) Animal models of brain ageing and dementia. Comp. Gerontol., 1, 4–15.

    CAS  Google Scholar 

  • Selkoe, D.J., Bell, D.S., Podlisny, M.B. et al. (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science, 235, 873–7.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, A., Kuwamura, M., Umemura, Y. et al. (1991) Modified bielchowski and immunohistochemical studies on senile plaques in aged dogs. Neurosci. Lett., 129, 25–8.

    Article  PubMed  CAS  Google Scholar 

  • Shoulson, I., Fahn, S., Oakes, D. et al. (The Parkinson Study Group) (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N. Engl. J. Med., 321, 1364–71.

    Article  Google Scholar 

  • Sirviö, J., Lukkarinen, K., Riekkinen, P. et al. (1991) The effects of atipamezole, an alpha-2 antagonist, on the performance of young and aged rats in the delayed non-matching to position task. Pharmacol. Biochem. Behay., 39, 101–519.

    Google Scholar 

  • Smith, G. (1988) Animal models of Alzheimer’s disease: experimental cholinergic denervation. Brain Res. Rev., 13, 103–18.

    Article  Google Scholar 

  • Spencer, D.G. and Lal, H. (1983) Effects of anticholinergic drugs on learning and memory. Drug De-o. Res., 3, 489–502.

    Article  CAS  Google Scholar 

  • St George-Hyslop, P.H., Tanzi, R.E., Polinsky, R.J. et al. (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science, 235, 2807–13.

    Google Scholar 

  • Stone, C.P. (1929) The age factor in animal learning: II. Rats on a multiple light discrimination box and a difficult maze. Genet. Psychol. Monogr., 6, 125–201.

    Google Scholar 

  • Strong, R., Hicks, P., Hsu, L. et al. (1980) Age-related alterations in the rodent brain cholinergic system and behavior. Neurobiol. Aging, 1, 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Struble, R.G., Price, D.L., Cork, L.C. and Price, D.L. (1985) Senile plaques in cortex of aged normal monkeys. Brain Res., 361, 267–75.

    Article  PubMed  CAS  Google Scholar 

  • Stwertka, S.A. and Olson, G.L. (1986) Neuropathology and amphetamine-induced turning resulting from AF64A injections into the striatum of the rat. Life Sci., 38, 1105–10.

    Article  PubMed  CAS  Google Scholar 

  • Suckling, A.J., Bateman, S., Waldron, C.B. et al. (1976) Motor activity changes in scrapie-affected mice. Br. J. Exp. Pathol., 57, 742–6.

    PubMed  CAS  Google Scholar 

  • Tauchi, H., Yoshioka, T. and Kobayashi, H. (1971) Age change of skeletal muscles of rats. Gerontology, 17, 219–27.

    Article  CAS  Google Scholar 

  • Terry, R.D. and Davies, P. (1983) Some morphologic and biochemical aspects of Alzheimer’s disease. In Aging of the Brain (eds D. Samuel, S. Algeri, S. Gershon et al.), Raven Press, New York, pp. 47–59.

    Google Scholar 

  • Terry, R.D. and Katzman, R. (1983) Senile dementia of the Alzheimer type. Ann. Neurol., 14, 497–506.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R.D. and Pena, C. (1965) Experimental production of neurofibrillary degeneration. II. Electron microscopy, phosphate histochemistry and electron probe analysis. J. Neuropathol. Exp. Neurol., 24, 200–10.

    Article  PubMed  CAS  Google Scholar 

  • Thal, L.J., Mandel, R.J., Terry, R.D. et al. (1990) Nucleus basalis lesions fail to induce senile plaques in the rat. Exp. Neurol., 108, 88–90.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C.I. and Fitzsimons, T.R. (1976) Age differences in aversively motivated visual discrimination learning and retention in male Sprague-Dawley rats. J. Gerontol., 31, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, B.E., Blessed, G. and Roth, M. (1970) Observations on the brains of demented old people. J. Neurol. Sci., 11, 205–42.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, B.E., Irving, D. and Blessed, G. (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci., 49, 419–28.

    Article  PubMed  CAS  Google Scholar 

  • Trapp, G.A., Miner, G.D., Zimmerman, R.L. et al. (1978) Aluminum levels in brain in Alzheimer’s disease. Biol. Psychiatry, 13, 709–18.

    PubMed  CAS  Google Scholar 

  • Tuffery, A.R. (1971) Growth and degeneration of motor end-plates in normal cat hind limb muscle. J. Anat., 110, 221–47.

    PubMed  CAS  Google Scholar 

  • Van Broeckhoven, C., Genthe, A.M., Vandenburghe, A. et al. (1987) Failure of familial Alzheimer’s disease to segregate with the A4amyloid gene in several European families. Nature, 329, 153–5.

    Article  PubMed  Google Scholar 

  • Vaughan, D.W. (1976) Membranous bodies in the cerebral cortex of aging rats: an electron microscope study. J. Neuropathol. Exp. Neurol., 35, 152–66.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, D.W. (1977) Age related deterioration of pyramidal cell basal dendrites in rat auditory cortex. J. Comp. Neurol., 171, 501–16.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, D.W. and Peters, A. (1974) Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: and electron microscope study. J. Neurocytol., 3, 405–29.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, D.W. and Peters, A. (1981) The structure of neuritic plaques in the cerebral cortex of aged rats. J. Neuropathol. Exp. Neurol., 40, 472–87.

    Article  PubMed  CAS  Google Scholar 

  • Walker, L.C., Kitt, C.A., Schwam, E. et al. (1987) Senile plaques in aged squirrel monkeys. Neurobiol. Aging, 8, 291–6.

    Article  PubMed  CAS  Google Scholar 

  • Walker, L.C., Kitt, C.L., Struble, R.G. et al. (1988) The neural basis of memory decline in aged monkeys. Neurobiol. Aging, 9, 657–66.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, J.E., Krauter, E.E. and Campbell, B.A. (1980a) Animal models of declining memory in the aged: short-term and spatial memory in the aged rat. J. Gerontol., 35, 355–63.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, J.E., Krauter, E.E. and Campbell, B.A. (1980b) Motor and reflexive behavior in the aging rat. J. Gerontol., 35, 364–70.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, T.J., Tilson, H.A., DeHaven, D.L. et al. (1984) AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial arm maze deficits in the rat. Brain Res., 321, 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Warburton, D.M. (1972) The cholinergic control of internal inhibition. In Inhibition and Learning (eds R.A. Boakes and M.S. Halliday ), Academic Press, New York, pp. 431–60.

    Google Scholar 

  • Warburton, D.M. and Brown, K. (1971) Scopolamine-induced attenuation of stimulus sensitivity. Nature, 230, 126–7.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G.L. and Olton, D.S. (1987) Basal forebrain cholinergic neurons and Alzheimer’s disease. In Animal Models of Dementia: a Synaptic Neurochemical Perspective (ed. J.T. Coyle ), A.R. Liss, New York, pp. 81–101.

    Google Scholar 

  • Wenk, G.L., Markowska, A.L. and Olton, D.S. (1989) Basal forebrain lesions and memory: alterations in neurotensin, not acetylcholine, may cause amnesia. Behay. Neurosci., 103, 765–9.

    Article  CAS  Google Scholar 

  • Whishaw, I.Q., O’Connor, W.T. and Dunnett, S.B. (1985) Disruption of central cholinergic systems in the rat by basal forebrain lesions or atropine: effects on feeding, sensorimotor behaviour, locomotor activity and spatial navigation. Behay. Brain Res., 17, 103–15.

    Article  CAS  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Clark, A.W. et al. (1981) Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol., 10, 122–6.

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Struble, R.G. et al. (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science, 215, 1237–9.

    Article  PubMed  CAS  Google Scholar 

  • Wilcock, G.K. and Esiri, M.M. (1982) Plaques, tangles and dementia: a quantitative study. J. Neurol. Sci., 56, 343–56.

    Article  PubMed  CAS  Google Scholar 

  • Wilcock, G.K., Esiri, M.M., Bowen, D.M. and Smith, C.C.T. (1982) Alzheimer’s disease: correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J. Neurol. Sci., 57, 407–17.

    Article  PubMed  CAS  Google Scholar 

  • Wilesmith, J.W., Wells, G.A.M.H., Cranwell, M.P. and Ryan, J.B.M. (1988) Bovine spongiform encephalopathy — epidemiological studies. Vet. Res., 123, 638–44.

    CAS  Google Scholar 

  • Wilesmith, J.W., Ryan, J.B.M. and Atkinson, M.J. (1991) Bovine spongiform encephalopathy — epidemiological studies on the origin. Vet. Res., 128, 199–203.

    CAS  Google Scholar 

  • Wiley, R.G., Oeltmann, T.N. and Lappi, D.A. (1991) Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res., 562, 149–53.

    Article  PubMed  CAS  Google Scholar 

  • Wirak, D.O., Bayney, R., Ramabhadran, T.V. et al. (1991) Deposits of amyloid ß protein in the central nervous system of transgenic mice. Science, 253, 323–5.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, H.M., Terry, R.D. and Hirano, A. (1970) Neurofibrillary pathology. J. Neuropathol. Exp. Neurol., 29, 163–76.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, H.M., Ghetti, B. and Terry, R.D. (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J. Neuropathol. Exp. Neurol., 32, 566–84.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, H.M., Bruce, M.E. and Fraser, H. (1975) Infectious etiology of neuritic (senile) plaques in mice. Science, 190, 1108–10.

    Article  PubMed  CAS  Google Scholar 

  • Wozniak, D.F., Stewart, G.R., Finger, S. and Olney, J.W. (1989) Comparison of behavioral effects of nucelus basalis magnocellularis lesions and somatosensory cortex ablation in the rat. Neuroscience, 32, 685–700.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, F., Richards, S.J., Beyreuther, K. et al. (1991) Transgenic mice for the amyloid precursor protein isoform 695 show deficits in spatial learning. NeuroReport, 2, 781–4.

    CAS  Google Scholar 

  • Yankner, B.A. and Mesulam, M.-M. (1991) Seminars in medicine of Beth Israel hospital: 0- amyloid and the pathogenesis of Alzheimer’s disease. N. Engl. J. Med., 325, 1849–57.

    Article  PubMed  CAS  Google Scholar 

  • Yerkes, R.M. (1909) Modifiability of behavior in its relations to the age and sex of the dancing mouse. J. Com. Neurol. Psychol., 19, 237–71.

    Article  Google Scholar 

  • Zornetzer, S.F. and Rogers, J. (1983) Animal models for assessment of geriatric mnemonic and motor deficits. In Assessment in Geriatric Psychopharmacology (eds T. Crook, S. Ferris and R. Bartus ), Mark Powley, New Canaan, pp. 301–22.

    Google Scholar 

  • Zornetzer, S.F., Thompson, R. and Rogers, J. (1982) Rapid forgetting in aged rats. Behay. Neural Biol., 36, 49–60.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dunnett, S.B. (1994). Animal Models of Alzheimer’s Disease. In: Burns, A., Levy, R. (eds) Dementia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6805-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6805-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6807-0

  • Online ISBN: 978-1-4615-6805-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics