Skip to main content

Advances in Tracking Chambers: The Micro-Strip Gas Chamber and the Microgap Chamber

  • Chapter
Techniques and Concepts of High-Energy Physics IX

Part of the book series: NATO ASI Series ((NSSB,volume 365))

  • 143 Accesses

Abstract

The study of Electroweak symmetry breaking is the next step to be done for the comprehension of elementary particles and interactions. The Standard Model has shown itself as the best description available up to now of fundamental processes, but its correctness will not be proved until the symmetry breaking sector is checked. The further one goes with high energy experiments, the harder it is to build and operate a suitable experimental apparatus, and the Large Hadron Collider (LHC) with its detectors ATLAS and CMS is going to be the most difficult task ever carried out in this field. The physics channels to be investigated have very small cross sections and branching ratios, so that very high luminosity (1034 cm-2 s-1) and centre-of-mass energy (14 TeV) are needed to detect them, and the constraints on the detectors are most stringent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The ALEPH Collaboration —“Mass limit for the Standard Model Higgs Boson with the full LEP I ALEPH data sample.” — CERN PPE/96–079

    Google Scholar 

  2. J. Ellis et al. — “The top quark and Higgs boson masses in the Standard Model and the MSSM.” — Phys. Lett. B333(94)118

    Article  Google Scholar 

  3. R. Casalbuoni et al. — “Physical implication of possible J =1 bound states from strong Higgs.” — Nucl. Phys. B282(1987)235

    Article  ADS  Google Scholar 

  4. A. C. Longhitano “Low-energy impact of a heavy Higgs boson sector.” Nucl. Phys. B188(1981)118

    Article  ADS  Google Scholar 

  5. A. Dobado et al. —“Learning about the strongly interacting symmetry breaking sector at LHC.” — CMS TN/94–276

    Google Scholar 

  6. M. Bando et al. — “Non linear realization and hidden local symmetries.” — Phys. Rep. 164(1988)217

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Casalbuoni et al. — “Effective weak interaction theory with a possible new vector resonance from a strong Higgs sector.” — Phys. Lett. B155(1985)95

    Article  ADS  Google Scholar 

  8. R. Casalbuoni et al. — “Vector and Axial Vector bound states from a strongly interacting electroweak sector.” — Int. Jou. of Mod. Phys. A5(1989)1065

    Article  ADS  Google Scholar 

  9. R. Casalbuoni et al. — “Symmetries for vector and axial-vector mesons.” — Phys. Lett. B349(1995)533

    Article  ADS  Google Scholar 

  10. R. Casalbuoni et al. — “Low energy strong electroweak sector with decoupling.” —Phys. Rev. D53(1996)5201

    Article  ADS  Google Scholar 

  11. European Committee for future accelerators — “Large Hadron Collider workshop proceedings.” — CERN 90–10, ECFA 90–133

    Google Scholar 

  12. The CMS Collaboration —“CMS Technical Proposal.” — CERN/LHCC 94–38,LHCC/P1

    Google Scholar 

  13. F. Angelini et al. — “Behaviour of microstrip gas chamber in strong magnetic field.” — Nucl. Inst. and Meth. A343(1994)441

    Article  ADS  Google Scholar 

  14. F. Angelini et al. —“A thin, large area microstrip gas chamber with strip and pad read-out.” — A336(1993)106

    Google Scholar 

  15. F. Angelini et al. —“A MSGC with true two-dimensional and pixel read out.” — Nucl. Inst. and Meth. A323 (1992) 229

    Article  ADS  Google Scholar 

  16. F. Angelini et al. — “The microstrip gas chamber.” — Nucl. Phys. B 23-A (1991) 254

    Article  Google Scholar 

  17. A. Oed et al. — “Substratum and layout parameters for microstrip anodes in gas detectors.” — Nucl. Inst. and Meth. A310(1991)95

    Article  ADS  Google Scholar 

  18. H. Sakurai et al. — “Dependence of energy resolution on anode diameter in xenon proportional counters.” — Nucl. Inst. and Meth. A313(1992)155

    Article  ADS  Google Scholar 

  19. R. Bouclier et al. — “Performance of gas microstrip chambers on glass and plastic supports.” — Nucl. Inst. and Meth. A232(1992)240

    Article  ADS  Google Scholar 

  20. R. Bouclier et al. — “Performance of gas microstrip chambers on glass substrata with electronic conductivity.” — Nucl. Inst. and Meth. A332(1993)100

    Article  ADS  Google Scholar 

  21. S. Biagi et al. — “Initial investigations of the performance of a microstrip gas avalanche chamber fabricated on a thin silicon dioxide substrate.” — Nucl. Inst. and Meth. A323(1992)258

    Article  ADS  Google Scholar 

  22. R. Bellazzini et al. — “Electric field, avalanche growth and signal development in MSGC’s and MGC’s.” — La Rivista del Nuovo Cimento, vol. 17, num. 12, 1994

    Article  Google Scholar 

  23. J. L. Pack et al. — “Longitudinal electron diffusion coefficients in gases: Noble gases.” — J. Appl. Phis. 71(1992)5363

    Article  ADS  Google Scholar 

  24. F. Piuz — “Measurement of the longitudinal diffusion of a single electron in gas mixtures used in proportional counters.” — Nucl. Inst. and Meth. 205(1983)425

    Article  Google Scholar 

  25. B. Jean-Marie et al. — “Systematic measurement of electron drift velocity and study of some properties of four gas mixtures.” — Nucl. Inst. and Meth. 159(1979)213

    Article  ADS  Google Scholar 

  26. V. Radeka —“Low noise techniques in detectors.” — Ann. Rev. Nucl. Part. Sci., 38(1988)217

    Article  ADS  Google Scholar 

  27. R. Sachdeva et al. —“Fast electronic readout of microstrip gas chambers.” — Nucl. Inst. and Meth. A348(1994)378

    Article  ADS  Google Scholar 

  28. S. Gadomski et al. —“The deconvolution method of fast pulse shaping at hadron colliders.” — Nucl. Inst. and Meth. A320(1992)217

    Article  ADS  Google Scholar 

  29. N. Bingeforts et al. —“A novel technique for fast pulse shaping using a slow amplifier at LHC.” — Nucl. Inst. and Meth. A326(1993)112

    Article  ADS  Google Scholar 

  30. F. Angelini et al. — “The Micro Gap Chamber.” —Nucl. Inst. and Meth. A335(1993)69

    Article  ADS  Google Scholar 

  31. R. Bellazzini et al. — “The Micro Gap Chamber: a new detector for the next generation of high energy, high rate experiments.” — Nucl. Inst. and Meth. A368(1995)259

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bellazzini, R., Spezziga, M.A. (1997). Advances in Tracking Chambers: The Micro-Strip Gas Chamber and the Microgap Chamber. In: Ferbel, T. (eds) Techniques and Concepts of High-Energy Physics IX. NATO ASI Series, vol 365. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5963-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5963-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7733-7

  • Online ISBN: 978-1-4615-5963-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics